1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
SUBROUTINE ZSPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
* * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDC, N DOUBLE PRECISION RESID * .. * .. Array Arguments .. INTEGER IPIV( * ) DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( * ), AFAC( * ), C( LDC, * ) * .. * * Purpose * ======= * * ZSPT01 reconstructs a symmetric indefinite packed matrix A from its * diagonal pivoting factorization A = U*D*U' or A = L*D*L' and computes * the residual * norm( C - A ) / ( N * norm(A) * EPS ), * where C is the reconstructed matrix and EPS is the machine epsilon. * * Arguments * ========== * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * Hermitian matrix A is stored: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input) COMPLEX*16 array, dimension (N*(N+1)/2) * The original symmetric matrix A, stored as a packed * triangular matrix. * * AFAC (input) COMPLEX*16 array, dimension (N*(N+1)/2) * The factored form of the matrix A, stored as a packed * triangular matrix. AFAC contains the block diagonal matrix D * and the multipliers used to obtain the factor L or U from the * L*D*L' or U*D*U' factorization as computed by ZSPTRF. * * IPIV (input) INTEGER array, dimension (N) * The pivot indices from ZSPTRF. * * C (workspace) COMPLEX*16 array, dimension (LDC,N) * * LDC (integer) INTEGER * The leading dimension of the array C. LDC >= max(1,N). * * RWORK (workspace) DOUBLE PRECISION array, dimension (N) * * RESID (output) DOUBLE PRECISION * If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) * If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. INTEGER I, INFO, J, JC DOUBLE PRECISION ANORM, EPS * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, ZLANSP, ZLANSY EXTERNAL LSAME, DLAMCH, ZLANSP, ZLANSY * .. * .. External Subroutines .. EXTERNAL ZLASET, ZLAVSP * .. * .. Intrinsic Functions .. INTRINSIC DBLE * .. * .. Executable Statements .. * * Quick exit if N = 0. * IF( N.LE.0 ) THEN RESID = ZERO RETURN END IF * * Determine EPS and the norm of A. * EPS = DLAMCH( 'Epsilon' ) ANORM = ZLANSP( '1', UPLO, N, A, RWORK ) * * Initialize C to the identity matrix. * CALL ZLASET( 'Full', N, N, CZERO, CONE, C, LDC ) * * Call ZLAVSP to form the product D * U' (or D * L' ). * CALL ZLAVSP( UPLO, 'Transpose', 'Non-unit', N, N, AFAC, IPIV, C, $ LDC, INFO ) * * Call ZLAVSP again to multiply by U ( or L ). * CALL ZLAVSP( UPLO, 'No transpose', 'Unit', N, N, AFAC, IPIV, C, $ LDC, INFO ) * * Compute the difference C - A . * IF( LSAME( UPLO, 'U' ) ) THEN JC = 0 DO 20 J = 1, N DO 10 I = 1, J C( I, J ) = C( I, J ) - A( JC+I ) 10 CONTINUE JC = JC + J 20 CONTINUE ELSE JC = 1 DO 40 J = 1, N DO 30 I = J, N C( I, J ) = C( I, J ) - A( JC+I-J ) 30 CONTINUE JC = JC + N - J + 1 40 CONTINUE END IF * * Compute norm( C - A ) / ( N * norm(A) * EPS ) * RESID = ZLANSY( '1', UPLO, N, C, LDC, RWORK ) * IF( ANORM.LE.ZERO ) THEN IF( RESID.NE.ZERO ) $ RESID = ONE / EPS ELSE RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS END IF * RETURN * * End of ZSPT01 * END |