ZTBT02
   Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
November 2006
November 2006
Purpose
ZTBT02 computes the residual for the computed solution to a
triangular system of linear equations A*x = b, A**T *x = b, or
A**H *x = b when A is a triangular band matrix. Here A**T denotes
the transpose of A, A**H denotes the conjugate transpose of A, and
x and b are N by NRHS matrices. The test ratio is the maximum over
the number of right hand sides of
norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon.
triangular system of linear equations A*x = b, A**T *x = b, or
A**H *x = b when A is a triangular band matrix. Here A**T denotes
the transpose of A, A**H denotes the conjugate transpose of A, and
x and b are N by NRHS matrices. The test ratio is the maximum over
the number of right hand sides of
norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon.
Arguments
| UPLO | 
 
(input) CHARACTER*1
 
Specifies whether the matrix A is upper or lower triangular. 
= 'U': Upper triangular = 'L': Lower triangular  | 
| TRANS | 
 
(input) CHARACTER*1
 
Specifies the operation applied to A. 
= 'N': A *x = b (No transpose) = 'T': A**T *x = b (Transpose) = 'C': A**H *x = b (Conjugate transpose)  | 
| DIAG | 
 
(input) CHARACTER*1
 
Specifies whether or not the matrix A is unit triangular. 
= 'N': Non-unit triangular = 'U': Unit triangular  | 
| N | 
 
(input) INTEGER
 
The order of the matrix A.  N >= 0. 
 | 
| KD | 
 
(input) INTEGER
 
The number of superdiagonals or subdiagonals of the 
triangular band matrix A. KD >= 0.  | 
| NRHS | 
 
(input) INTEGER
 
The number of right hand sides, i.e., the number of columns 
of the matrices X and B. NRHS >= 0.  | 
| AB | 
 
(input) COMPLEX*16 array, dimension (LDA,N)
 
The upper or lower triangular band matrix A, stored in the 
first kd+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).  | 
| LDAB | 
 
(input) INTEGER
 
The leading dimension of the array AB.  LDAB >= max(1,KD+1). 
 | 
| X | 
 
(input) COMPLEX*16 array, dimension (LDX,NRHS)
 
The computed solution vectors for the system of linear 
equations.  | 
| LDX | 
 
(input) INTEGER
 
The leading dimension of the array X.  LDX >= max(1,N). 
 | 
| B | 
 
(input) COMPLEX*16 array, dimension (LDB,NRHS)
 
The right hand side vectors for the system of linear 
equations.  | 
| LDB | 
 
(input) INTEGER
 
The leading dimension of the array B.  LDB >= max(1,N). 
 | 
| WORK | 
 
(workspace) COMPLEX*16 array, dimension (N)
 
 | 
| RWORK | 
 
(workspace) DOUBLE PRECISION array, dimension (N)
 
 | 
| RESID | 
 
(output) DOUBLE PRECISION
 
The maximum over the number of right hand sides of 
norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ).  |