1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
SUBROUTINE CLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA,
$ BETA, WX, WY, S, DIF ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * June 2010 * * .. Scalar Arguments .. INTEGER LDA, LDX, LDY, N, TYPE COMPLEX ALPHA, BETA, WX, WY * .. * .. Array Arguments .. REAL DIF( * ), S( * ) COMPLEX A( LDA, * ), B( LDA, * ), X( LDX, * ), $ Y( LDY, * ) * .. * * Purpose * ======= * * CLATM6 generates test matrices for the generalized eigenvalue * problem, their corresponding right and left eigenvector matrices, * and also reciprocal condition numbers for all eigenvalues and * the reciprocal condition numbers of eigenvectors corresponding to * the 1th and 5th eigenvalues. * * Test Matrices * ============= * * Two kinds of test matrix pairs * (A, B) = inverse(YH) * (Da, Db) * inverse(X) * are used in the tests: * * Type 1: * Da = 1+a 0 0 0 0 Db = 1 0 0 0 0 * 0 2+a 0 0 0 0 1 0 0 0 * 0 0 3+a 0 0 0 0 1 0 0 * 0 0 0 4+a 0 0 0 0 1 0 * 0 0 0 0 5+a , 0 0 0 0 1 * and Type 2: * Da = 1+i 0 0 0 0 Db = 1 0 0 0 0 * 0 1-i 0 0 0 0 1 0 0 0 * 0 0 1 0 0 0 0 1 0 0 * 0 0 0 (1+a)+(1+b)i 0 0 0 0 1 0 * 0 0 0 0 (1+a)-(1+b)i, 0 0 0 0 1 . * * In both cases the same inverse(YH) and inverse(X) are used to compute * (A, B), giving the exact eigenvectors to (A,B) as (YH, X): * * YH: = 1 0 -y y -y X = 1 0 -x -x x * 0 1 -y y -y 0 1 x -x -x * 0 0 1 0 0 0 0 1 0 0 * 0 0 0 1 0 0 0 0 1 0 * 0 0 0 0 1, 0 0 0 0 1 , where * * a, b, x and y will have all values independently of each other. * * Arguments * ========= * * TYPE (input) INTEGER * Specifies the problem type (see futher details). * * N (input) INTEGER * Size of the matrices A and B. * * A (output) COMPLEX array, dimension (LDA, N). * On exit A N-by-N is initialized according to TYPE. * * LDA (input) INTEGER * The leading dimension of A and of B. * * B (output) COMPLEX array, dimension (LDA, N). * On exit B N-by-N is initialized according to TYPE. * * X (output) COMPLEX array, dimension (LDX, N). * On exit X is the N-by-N matrix of right eigenvectors. * * LDX (input) INTEGER * The leading dimension of X. * * Y (output) COMPLEX array, dimension (LDY, N). * On exit Y is the N-by-N matrix of left eigenvectors. * * LDY (input) INTEGER * The leading dimension of Y. * * ALPHA (input) COMPLEX * * BETA (input) COMPLEX * Weighting constants for matrix A. * * WX (input) COMPLEX * Constant for right eigenvector matrix. * * WY (input) COMPLEX * Constant for left eigenvector matrix. * * S (output) REAL array, dimension (N) * S(i) is the reciprocal condition number for eigenvalue i. * * DIF (output) REAL array, dimension (N) * DIF(i) is the reciprocal condition number for eigenvector i. * * ===================================================================== * * .. Parameters .. REAL RONE, TWO, THREE PARAMETER ( RONE = 1.0E+0, TWO = 2.0E+0, THREE = 3.0E+0 ) COMPLEX ZERO, ONE PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ), $ ONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER I, INFO, J * .. * .. Local Arrays .. REAL RWORK( 50 ) COMPLEX WORK( 26 ), Z( 8, 8 ) * .. * .. Intrinsic Functions .. INTRINSIC CABS, CMPLX, CONJG, REAL, SQRT * .. * .. External Subroutines .. EXTERNAL CGESVD, CLACPY, CLAKF2 * .. * .. Executable Statements .. * * Generate test problem ... * (Da, Db) ... * DO 20 I = 1, N DO 10 J = 1, N * IF( I.EQ.J ) THEN A( I, I ) = CMPLX( I ) + ALPHA B( I, I ) = ONE ELSE A( I, J ) = ZERO B( I, J ) = ZERO END IF * 10 CONTINUE 20 CONTINUE IF( TYPE.EQ.2 ) THEN A( 1, 1 ) = CMPLX( RONE, RONE ) A( 2, 2 ) = CONJG( A( 1, 1 ) ) A( 3, 3 ) = ONE A( 4, 4 ) = CMPLX( REAL( ONE+ALPHA ), REAL( ONE+BETA ) ) A( 5, 5 ) = CONJG( A( 4, 4 ) ) END IF * * Form X and Y * CALL CLACPY( 'F', N, N, B, LDA, Y, LDY ) Y( 3, 1 ) = -CONJG( WY ) Y( 4, 1 ) = CONJG( WY ) Y( 5, 1 ) = -CONJG( WY ) Y( 3, 2 ) = -CONJG( WY ) Y( 4, 2 ) = CONJG( WY ) Y( 5, 2 ) = -CONJG( WY ) * CALL CLACPY( 'F', N, N, B, LDA, X, LDX ) X( 1, 3 ) = -WX X( 1, 4 ) = -WX X( 1, 5 ) = WX X( 2, 3 ) = WX X( 2, 4 ) = -WX X( 2, 5 ) = -WX * * Form (A, B) * B( 1, 3 ) = WX + WY B( 2, 3 ) = -WX + WY B( 1, 4 ) = WX - WY B( 2, 4 ) = WX - WY B( 1, 5 ) = -WX + WY B( 2, 5 ) = WX + WY A( 1, 3 ) = WX*A( 1, 1 ) + WY*A( 3, 3 ) A( 2, 3 ) = -WX*A( 2, 2 ) + WY*A( 3, 3 ) A( 1, 4 ) = WX*A( 1, 1 ) - WY*A( 4, 4 ) A( 2, 4 ) = WX*A( 2, 2 ) - WY*A( 4, 4 ) A( 1, 5 ) = -WX*A( 1, 1 ) + WY*A( 5, 5 ) A( 2, 5 ) = WX*A( 2, 2 ) + WY*A( 5, 5 ) * * Compute condition numbers * S( 1 ) = RONE / SQRT( ( RONE+THREE*CABS( WY )*CABS( WY ) ) / $ ( RONE+CABS( A( 1, 1 ) )*CABS( A( 1, 1 ) ) ) ) S( 2 ) = RONE / SQRT( ( RONE+THREE*CABS( WY )*CABS( WY ) ) / $ ( RONE+CABS( A( 2, 2 ) )*CABS( A( 2, 2 ) ) ) ) S( 3 ) = RONE / SQRT( ( RONE+TWO*CABS( WX )*CABS( WX ) ) / $ ( RONE+CABS( A( 3, 3 ) )*CABS( A( 3, 3 ) ) ) ) S( 4 ) = RONE / SQRT( ( RONE+TWO*CABS( WX )*CABS( WX ) ) / $ ( RONE+CABS( A( 4, 4 ) )*CABS( A( 4, 4 ) ) ) ) S( 5 ) = RONE / SQRT( ( RONE+TWO*CABS( WX )*CABS( WX ) ) / $ ( RONE+CABS( A( 5, 5 ) )*CABS( A( 5, 5 ) ) ) ) * CALL CLAKF2( 1, 4, A, LDA, A( 2, 2 ), B, B( 2, 2 ), Z, 8 ) CALL CGESVD( 'N', 'N', 8, 8, Z, 8, RWORK, WORK, 1, WORK( 2 ), 1, $ WORK( 3 ), 24, RWORK( 9 ), INFO ) DIF( 1 ) = RWORK( 8 ) * CALL CLAKF2( 4, 1, A, LDA, A( 5, 5 ), B, B( 5, 5 ), Z, 8 ) CALL CGESVD( 'N', 'N', 8, 8, Z, 8, RWORK, WORK, 1, WORK( 2 ), 1, $ WORK( 3 ), 24, RWORK( 9 ), INFO ) DIF( 5 ) = RWORK( 8 ) * RETURN * * End of CLATM6 * END |