1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
SUBROUTINE DLAGGE( M, N, KL, KU, D, A, LDA, ISEED, WORK, INFO )
* * -- LAPACK auxiliary test routine (version 3.1) * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER INFO, KL, KU, LDA, M, N * .. * .. Array Arguments .. INTEGER ISEED( 4 ) DOUBLE PRECISION A( LDA, * ), D( * ), WORK( * ) * .. * * Purpose * ======= * * DLAGGE generates a real general m by n matrix A, by pre- and post- * multiplying a real diagonal matrix D with random orthogonal matrices: * A = U*D*V. The lower and upper bandwidths may then be reduced to * kl and ku by additional orthogonal transformations. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * KL (input) INTEGER * The number of nonzero subdiagonals within the band of A. * 0 <= KL <= M-1. * * KU (input) INTEGER * The number of nonzero superdiagonals within the band of A. * 0 <= KU <= N-1. * * D (input) DOUBLE PRECISION array, dimension (min(M,N)) * The diagonal elements of the diagonal matrix D. * * A (output) DOUBLE PRECISION array, dimension (LDA,N) * The generated m by n matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= M. * * ISEED (input/output) INTEGER array, dimension (4) * On entry, the seed of the random number generator; the array * elements must be between 0 and 4095, and ISEED(4) must be * odd. * On exit, the seed is updated. * * WORK (workspace) DOUBLE PRECISION array, dimension (M+N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. INTEGER I, J DOUBLE PRECISION TAU, WA, WB, WN * .. * .. External Subroutines .. EXTERNAL DGEMV, DGER, DLARNV, DSCAL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN, SIGN * .. * .. External Functions .. DOUBLE PRECISION DNRM2 EXTERNAL DNRM2 * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( KL.LT.0 .OR. KL.GT.M-1 ) THEN INFO = -3 ELSE IF( KU.LT.0 .OR. KU.GT.N-1 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -7 END IF IF( INFO.LT.0 ) THEN CALL XERBLA( 'DLAGGE', -INFO ) RETURN END IF * * initialize A to diagonal matrix * DO 20 J = 1, N DO 10 I = 1, M A( I, J ) = ZERO 10 CONTINUE 20 CONTINUE DO 30 I = 1, MIN( M, N ) A( I, I ) = D( I ) 30 CONTINUE * * pre- and post-multiply A by random orthogonal matrices * DO 40 I = MIN( M, N ), 1, -1 IF( I.LT.M ) THEN * * generate random reflection * CALL DLARNV( 3, ISEED, M-I+1, WORK ) WN = DNRM2( M-I+1, WORK, 1 ) WA = SIGN( WN, WORK( 1 ) ) IF( WN.EQ.ZERO ) THEN TAU = ZERO ELSE WB = WORK( 1 ) + WA CALL DSCAL( M-I, ONE / WB, WORK( 2 ), 1 ) WORK( 1 ) = ONE TAU = WB / WA END IF * * multiply A(i:m,i:n) by random reflection from the left * CALL DGEMV( 'Transpose', M-I+1, N-I+1, ONE, A( I, I ), LDA, $ WORK, 1, ZERO, WORK( M+1 ), 1 ) CALL DGER( M-I+1, N-I+1, -TAU, WORK, 1, WORK( M+1 ), 1, $ A( I, I ), LDA ) END IF IF( I.LT.N ) THEN * * generate random reflection * CALL DLARNV( 3, ISEED, N-I+1, WORK ) WN = DNRM2( N-I+1, WORK, 1 ) WA = SIGN( WN, WORK( 1 ) ) IF( WN.EQ.ZERO ) THEN TAU = ZERO ELSE WB = WORK( 1 ) + WA CALL DSCAL( N-I, ONE / WB, WORK( 2 ), 1 ) WORK( 1 ) = ONE TAU = WB / WA END IF * * multiply A(i:m,i:n) by random reflection from the right * CALL DGEMV( 'No transpose', M-I+1, N-I+1, ONE, A( I, I ), $ LDA, WORK, 1, ZERO, WORK( N+1 ), 1 ) CALL DGER( M-I+1, N-I+1, -TAU, WORK( N+1 ), 1, WORK, 1, $ A( I, I ), LDA ) END IF 40 CONTINUE * * Reduce number of subdiagonals to KL and number of superdiagonals * to KU * DO 70 I = 1, MAX( M-1-KL, N-1-KU ) IF( KL.LE.KU ) THEN * * annihilate subdiagonal elements first (necessary if KL = 0) * IF( I.LE.MIN( M-1-KL, N ) ) THEN * * generate reflection to annihilate A(kl+i+1:m,i) * WN = DNRM2( M-KL-I+1, A( KL+I, I ), 1 ) WA = SIGN( WN, A( KL+I, I ) ) IF( WN.EQ.ZERO ) THEN TAU = ZERO ELSE WB = A( KL+I, I ) + WA CALL DSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 ) A( KL+I, I ) = ONE TAU = WB / WA END IF * * apply reflection to A(kl+i:m,i+1:n) from the left * CALL DGEMV( 'Transpose', M-KL-I+1, N-I, ONE, $ A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO, $ WORK, 1 ) CALL DGER( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK, 1, $ A( KL+I, I+1 ), LDA ) A( KL+I, I ) = -WA END IF * IF( I.LE.MIN( N-1-KU, M ) ) THEN * * generate reflection to annihilate A(i,ku+i+1:n) * WN = DNRM2( N-KU-I+1, A( I, KU+I ), LDA ) WA = SIGN( WN, A( I, KU+I ) ) IF( WN.EQ.ZERO ) THEN TAU = ZERO ELSE WB = A( I, KU+I ) + WA CALL DSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA ) A( I, KU+I ) = ONE TAU = WB / WA END IF * * apply reflection to A(i+1:m,ku+i:n) from the right * CALL DGEMV( 'No transpose', M-I, N-KU-I+1, ONE, $ A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO, $ WORK, 1 ) CALL DGER( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ), $ LDA, A( I+1, KU+I ), LDA ) A( I, KU+I ) = -WA END IF ELSE * * annihilate superdiagonal elements first (necessary if * KU = 0) * IF( I.LE.MIN( N-1-KU, M ) ) THEN * * generate reflection to annihilate A(i,ku+i+1:n) * WN = DNRM2( N-KU-I+1, A( I, KU+I ), LDA ) WA = SIGN( WN, A( I, KU+I ) ) IF( WN.EQ.ZERO ) THEN TAU = ZERO ELSE WB = A( I, KU+I ) + WA CALL DSCAL( N-KU-I, ONE / WB, A( I, KU+I+1 ), LDA ) A( I, KU+I ) = ONE TAU = WB / WA END IF * * apply reflection to A(i+1:m,ku+i:n) from the right * CALL DGEMV( 'No transpose', M-I, N-KU-I+1, ONE, $ A( I+1, KU+I ), LDA, A( I, KU+I ), LDA, ZERO, $ WORK, 1 ) CALL DGER( M-I, N-KU-I+1, -TAU, WORK, 1, A( I, KU+I ), $ LDA, A( I+1, KU+I ), LDA ) A( I, KU+I ) = -WA END IF * IF( I.LE.MIN( M-1-KL, N ) ) THEN * * generate reflection to annihilate A(kl+i+1:m,i) * WN = DNRM2( M-KL-I+1, A( KL+I, I ), 1 ) WA = SIGN( WN, A( KL+I, I ) ) IF( WN.EQ.ZERO ) THEN TAU = ZERO ELSE WB = A( KL+I, I ) + WA CALL DSCAL( M-KL-I, ONE / WB, A( KL+I+1, I ), 1 ) A( KL+I, I ) = ONE TAU = WB / WA END IF * * apply reflection to A(kl+i:m,i+1:n) from the left * CALL DGEMV( 'Transpose', M-KL-I+1, N-I, ONE, $ A( KL+I, I+1 ), LDA, A( KL+I, I ), 1, ZERO, $ WORK, 1 ) CALL DGER( M-KL-I+1, N-I, -TAU, A( KL+I, I ), 1, WORK, 1, $ A( KL+I, I+1 ), LDA ) A( KL+I, I ) = -WA END IF END IF * DO 50 J = KL + I + 1, M A( J, I ) = ZERO 50 CONTINUE * DO 60 J = KU + I + 1, N A( I, J ) = ZERO 60 CONTINUE 70 CONTINUE RETURN * * End of DLAGGE * END |