1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
SUBROUTINE DLAGSY( N, K, D, A, LDA, ISEED, WORK, INFO )
* * -- LAPACK auxiliary test routine (version 3.1) * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER INFO, K, LDA, N * .. * .. Array Arguments .. INTEGER ISEED( 4 ) DOUBLE PRECISION A( LDA, * ), D( * ), WORK( * ) * .. * * Purpose * ======= * * DLAGSY generates a real symmetric matrix A, by pre- and post- * multiplying a real diagonal matrix D with a random orthogonal matrix: * A = U*D*U'. The semi-bandwidth may then be reduced to k by additional * orthogonal transformations. * * Arguments * ========= * * N (input) INTEGER * The order of the matrix A. N >= 0. * * K (input) INTEGER * The number of nonzero subdiagonals within the band of A. * 0 <= K <= N-1. * * D (input) DOUBLE PRECISION array, dimension (N) * The diagonal elements of the diagonal matrix D. * * A (output) DOUBLE PRECISION array, dimension (LDA,N) * The generated n by n symmetric matrix A (the full matrix is * stored). * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= N. * * ISEED (input/output) INTEGER array, dimension (4) * On entry, the seed of the random number generator; the array * elements must be between 0 and 4095, and ISEED(4) must be * odd. * On exit, the seed is updated. * * WORK (workspace) DOUBLE PRECISION array, dimension (2*N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, HALF PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, HALF = 0.5D+0 ) * .. * .. Local Scalars .. INTEGER I, J DOUBLE PRECISION ALPHA, TAU, WA, WB, WN * .. * .. External Subroutines .. EXTERNAL DAXPY, DGEMV, DGER, DLARNV, DSCAL, DSYMV, $ DSYR2, XERBLA * .. * .. External Functions .. DOUBLE PRECISION DDOT, DNRM2 EXTERNAL DDOT, DNRM2 * .. * .. Intrinsic Functions .. INTRINSIC MAX, SIGN * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 IF( N.LT.0 ) THEN INFO = -1 ELSE IF( K.LT.0 .OR. K.GT.N-1 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 END IF IF( INFO.LT.0 ) THEN CALL XERBLA( 'DLAGSY', -INFO ) RETURN END IF * * initialize lower triangle of A to diagonal matrix * DO 20 J = 1, N DO 10 I = J + 1, N A( I, J ) = ZERO 10 CONTINUE 20 CONTINUE DO 30 I = 1, N A( I, I ) = D( I ) 30 CONTINUE * * Generate lower triangle of symmetric matrix * DO 40 I = N - 1, 1, -1 * * generate random reflection * CALL DLARNV( 3, ISEED, N-I+1, WORK ) WN = DNRM2( N-I+1, WORK, 1 ) WA = SIGN( WN, WORK( 1 ) ) IF( WN.EQ.ZERO ) THEN TAU = ZERO ELSE WB = WORK( 1 ) + WA CALL DSCAL( N-I, ONE / WB, WORK( 2 ), 1 ) WORK( 1 ) = ONE TAU = WB / WA END IF * * apply random reflection to A(i:n,i:n) from the left * and the right * * compute y := tau * A * u * CALL DSYMV( 'Lower', N-I+1, TAU, A( I, I ), LDA, WORK, 1, ZERO, $ WORK( N+1 ), 1 ) * * compute v := y - 1/2 * tau * ( y, u ) * u * ALPHA = -HALF*TAU*DDOT( N-I+1, WORK( N+1 ), 1, WORK, 1 ) CALL DAXPY( N-I+1, ALPHA, WORK, 1, WORK( N+1 ), 1 ) * * apply the transformation as a rank-2 update to A(i:n,i:n) * CALL DSYR2( 'Lower', N-I+1, -ONE, WORK, 1, WORK( N+1 ), 1, $ A( I, I ), LDA ) 40 CONTINUE * * Reduce number of subdiagonals to K * DO 60 I = 1, N - 1 - K * * generate reflection to annihilate A(k+i+1:n,i) * WN = DNRM2( N-K-I+1, A( K+I, I ), 1 ) WA = SIGN( WN, A( K+I, I ) ) IF( WN.EQ.ZERO ) THEN TAU = ZERO ELSE WB = A( K+I, I ) + WA CALL DSCAL( N-K-I, ONE / WB, A( K+I+1, I ), 1 ) A( K+I, I ) = ONE TAU = WB / WA END IF * * apply reflection to A(k+i:n,i+1:k+i-1) from the left * CALL DGEMV( 'Transpose', N-K-I+1, K-1, ONE, A( K+I, I+1 ), LDA, $ A( K+I, I ), 1, ZERO, WORK, 1 ) CALL DGER( N-K-I+1, K-1, -TAU, A( K+I, I ), 1, WORK, 1, $ A( K+I, I+1 ), LDA ) * * apply reflection to A(k+i:n,k+i:n) from the left and the right * * compute y := tau * A * u * CALL DSYMV( 'Lower', N-K-I+1, TAU, A( K+I, K+I ), LDA, $ A( K+I, I ), 1, ZERO, WORK, 1 ) * * compute v := y - 1/2 * tau * ( y, u ) * u * ALPHA = -HALF*TAU*DDOT( N-K-I+1, WORK, 1, A( K+I, I ), 1 ) CALL DAXPY( N-K-I+1, ALPHA, A( K+I, I ), 1, WORK, 1 ) * * apply symmetric rank-2 update to A(k+i:n,k+i:n) * CALL DSYR2( 'Lower', N-K-I+1, -ONE, A( K+I, I ), 1, WORK, 1, $ A( K+I, K+I ), LDA ) * A( K+I, I ) = -WA DO 50 J = K + I + 1, N A( J, I ) = ZERO 50 CONTINUE 60 CONTINUE * * Store full symmetric matrix * DO 80 J = 1, N DO 70 I = J + 1, N A( J, I ) = A( I, J ) 70 CONTINUE 80 CONTINUE RETURN * * End of DLAGSY * END |