1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
DOUBLE PRECISION FUNCTION DLATM2( M, N, I, J, KL, KU, IDIST,
$ ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK, SPARSE ) * * -- LAPACK auxiliary test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * June 2010 * * .. Scalar Arguments .. * INTEGER I, IDIST, IGRADE, IPVTNG, J, KL, KU, M, N DOUBLE PRECISION SPARSE * .. * * .. Array Arguments .. * INTEGER ISEED( 4 ), IWORK( * ) DOUBLE PRECISION D( * ), DL( * ), DR( * ) * .. * * Purpose * ======= * * DLATM2 returns the (I,J) entry of a random matrix of dimension * (M, N) described by the other paramters. It is called by the * DLATMR routine in order to build random test matrices. No error * checking on parameters is done, because this routine is called in * a tight loop by DLATMR which has already checked the parameters. * * Use of DLATM2 differs from SLATM3 in the order in which the random * number generator is called to fill in random matrix entries. * With DLATM2, the generator is called to fill in the pivoted matrix * columnwise. With DLATM3, the generator is called to fill in the * matrix columnwise, after which it is pivoted. Thus, DLATM3 can * be used to construct random matrices which differ only in their * order of rows and/or columns. DLATM2 is used to construct band * matrices while avoiding calling the random number generator for * entries outside the band (and therefore generating random numbers * * The matrix whose (I,J) entry is returned is constructed as * follows (this routine only computes one entry): * * If I is outside (1..M) or J is outside (1..N), return zero * (this is convenient for generating matrices in band format). * * Generate a matrix A with random entries of distribution IDIST. * * Set the diagonal to D. * * Grade the matrix, if desired, from the left (by DL) and/or * from the right (by DR or DL) as specified by IGRADE. * * Permute, if desired, the rows and/or columns as specified by * IPVTNG and IWORK. * * Band the matrix to have lower bandwidth KL and upper * bandwidth KU. * * Set random entries to zero as specified by SPARSE. * * Arguments * ========= * * M (input) INTEGER * Number of rows of matrix. Not modified. * * N (input) INTEGER * Number of columns of matrix. Not modified. * * I (input) INTEGER * Row of entry to be returned. Not modified. * * J (input) INTEGER * Column of entry to be returned. Not modified. * * KL (input) INTEGER * Lower bandwidth. Not modified. * * KU (input) INTEGER * Upper bandwidth. Not modified. * * IDIST (input) INTEGER * On entry, IDIST specifies the type of distribution to be * used to generate a random matrix . * 1 => UNIFORM( 0, 1 ) * 2 => UNIFORM( -1, 1 ) * 3 => NORMAL( 0, 1 ) * Not modified. * * ISEED (input/output) INTEGER array of dimension ( 4 ) * Seed for random number generator. * Changed on exit. * * D (input) DOUBLE PRECISION array of dimension ( MIN( I , J ) ) * Diagonal entries of matrix. Not modified. * * IGRADE (input) INTEGER * Specifies grading of matrix as follows: * 0 => no grading * 1 => matrix premultiplied by diag( DL ) * 2 => matrix postmultiplied by diag( DR ) * 3 => matrix premultiplied by diag( DL ) and * postmultiplied by diag( DR ) * 4 => matrix premultiplied by diag( DL ) and * postmultiplied by inv( diag( DL ) ) * 5 => matrix premultiplied by diag( DL ) and * postmultiplied by diag( DL ) * Not modified. * * DL (input) DOUBLE PRECISION array ( I or J, as appropriate ) * Left scale factors for grading matrix. Not modified. * * DR (input) DOUBLE PRECISION array ( I or J, as appropriate ) * Right scale factors for grading matrix. Not modified. * * IPVTNG (input) INTEGER * On entry specifies pivoting permutations as follows: * 0 => none. * 1 => row pivoting. * 2 => column pivoting. * 3 => full pivoting, i.e., on both sides. * Not modified. * * IWORK (workspace) INTEGER array ( I or J, as appropriate ) * This array specifies the permutation used. The * row (or column) in position K was originally in * position IWORK( K ). * This differs from IWORK for DLATM3. Not modified. * * SPARSE (input) DOUBLE PRECISION between 0. and 1. * On entry specifies the sparsity of the matrix * if sparse matix is to be generated. * SPARSE should lie between 0 and 1. * A uniform ( 0, 1 ) random number x is generated and * compared to SPARSE; if x is larger the matrix entry * is unchanged and if x is smaller the entry is set * to zero. Thus on the average a fraction SPARSE of the * entries will be set to zero. * Not modified. * * ===================================================================== * * .. Parameters .. * DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) * .. * * .. Local Scalars .. * INTEGER ISUB, JSUB DOUBLE PRECISION TEMP * .. * * .. External Functions .. * DOUBLE PRECISION DLARAN, DLARND EXTERNAL DLARAN, DLARND * .. * *----------------------------------------------------------------------- * * .. Executable Statements .. * * * Check for I and J in range * IF( I.LT.1 .OR. I.GT.M .OR. J.LT.1 .OR. J.GT.N ) THEN DLATM2 = ZERO RETURN END IF * * Check for banding * IF( J.GT.I+KU .OR. J.LT.I-KL ) THEN DLATM2 = ZERO RETURN END IF * * Check for sparsity * IF( SPARSE.GT.ZERO ) THEN IF( DLARAN( ISEED ).LT.SPARSE ) THEN DLATM2 = ZERO RETURN END IF END IF * * Compute subscripts depending on IPVTNG * IF( IPVTNG.EQ.0 ) THEN ISUB = I JSUB = J ELSE IF( IPVTNG.EQ.1 ) THEN ISUB = IWORK( I ) JSUB = J ELSE IF( IPVTNG.EQ.2 ) THEN ISUB = I JSUB = IWORK( J ) ELSE IF( IPVTNG.EQ.3 ) THEN ISUB = IWORK( I ) JSUB = IWORK( J ) END IF * * Compute entry and grade it according to IGRADE * IF( ISUB.EQ.JSUB ) THEN TEMP = D( ISUB ) ELSE TEMP = DLARND( IDIST, ISEED ) END IF IF( IGRADE.EQ.1 ) THEN TEMP = TEMP*DL( ISUB ) ELSE IF( IGRADE.EQ.2 ) THEN TEMP = TEMP*DR( JSUB ) ELSE IF( IGRADE.EQ.3 ) THEN TEMP = TEMP*DL( ISUB )*DR( JSUB ) ELSE IF( IGRADE.EQ.4 .AND. ISUB.NE.JSUB ) THEN TEMP = TEMP*DL( ISUB ) / DL( JSUB ) ELSE IF( IGRADE.EQ.5 ) THEN TEMP = TEMP*DL( ISUB )*DL( JSUB ) END IF DLATM2 = TEMP RETURN * * End of DLATM2 * END |