1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
SUBROUTINE DLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA,
$ BETA, WX, WY, S, DIF ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDA, LDX, LDY, N, TYPE DOUBLE PRECISION ALPHA, BETA, WX, WY * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), B( LDA, * ), DIF( * ), S( * ), $ X( LDX, * ), Y( LDY, * ) * .. * * Purpose * ======= * * DLATM6 generates test matrices for the generalized eigenvalue * problem, their corresponding right and left eigenvector matrices, * and also reciprocal condition numbers for all eigenvalues and * the reciprocal condition numbers of eigenvectors corresponding to * the 1th and 5th eigenvalues. * * Test Matrices * ============= * * Two kinds of test matrix pairs * * (A, B) = inverse(YH) * (Da, Db) * inverse(X) * * are used in the tests: * * Type 1: * Da = 1+a 0 0 0 0 Db = 1 0 0 0 0 * 0 2+a 0 0 0 0 1 0 0 0 * 0 0 3+a 0 0 0 0 1 0 0 * 0 0 0 4+a 0 0 0 0 1 0 * 0 0 0 0 5+a , 0 0 0 0 1 , and * * Type 2: * Da = 1 -1 0 0 0 Db = 1 0 0 0 0 * 1 1 0 0 0 0 1 0 0 0 * 0 0 1 0 0 0 0 1 0 0 * 0 0 0 1+a 1+b 0 0 0 1 0 * 0 0 0 -1-b 1+a , 0 0 0 0 1 . * * In both cases the same inverse(YH) and inverse(X) are used to compute * (A, B), giving the exact eigenvectors to (A,B) as (YH, X): * * YH: = 1 0 -y y -y X = 1 0 -x -x x * 0 1 -y y -y 0 1 x -x -x * 0 0 1 0 0 0 0 1 0 0 * 0 0 0 1 0 0 0 0 1 0 * 0 0 0 0 1, 0 0 0 0 1 , * * where a, b, x and y will have all values independently of each other. * * Arguments * ========= * * TYPE (input) INTEGER * Specifies the problem type (see futher details). * * N (input) INTEGER * Size of the matrices A and B. * * A (output) DOUBLE PRECISION array, dimension (LDA, N). * On exit A N-by-N is initialized according to TYPE. * * LDA (input) INTEGER * The leading dimension of A and of B. * * B (output) DOUBLE PRECISION array, dimension (LDA, N). * On exit B N-by-N is initialized according to TYPE. * * X (output) DOUBLE PRECISION array, dimension (LDX, N). * On exit X is the N-by-N matrix of right eigenvectors. * * LDX (input) INTEGER * The leading dimension of X. * * Y (output) DOUBLE PRECISION array, dimension (LDY, N). * On exit Y is the N-by-N matrix of left eigenvectors. * * LDY (input) INTEGER * The leading dimension of Y. * * ALPHA (input) DOUBLE PRECISION * BETA (input) DOUBLE PRECISION * Weighting constants for matrix A. * * WX (input) DOUBLE PRECISION * Constant for right eigenvector matrix. * * WY (input) DOUBLE PRECISION * Constant for left eigenvector matrix. * * S (output) DOUBLE PRECISION array, dimension (N) * S(i) is the reciprocal condition number for eigenvalue i. * * DIF (output) DOUBLE PRECISION array, dimension (N) * DIF(i) is the reciprocal condition number for eigenvector i. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TWO, THREE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0, $ THREE = 3.0D+0 ) * .. * .. Local Scalars .. INTEGER I, INFO, J * .. * .. Local Arrays .. DOUBLE PRECISION WORK( 100 ), Z( 12, 12 ) * .. * .. Intrinsic Functions .. INTRINSIC DBLE, SQRT * .. * .. External Subroutines .. EXTERNAL DGESVD, DLACPY, DLAKF2 * .. * .. Executable Statements .. * * Generate test problem ... * (Da, Db) ... * DO 20 I = 1, N DO 10 J = 1, N * IF( I.EQ.J ) THEN A( I, I ) = DBLE( I ) + ALPHA B( I, I ) = ONE ELSE A( I, J ) = ZERO B( I, J ) = ZERO END IF * 10 CONTINUE 20 CONTINUE * * Form X and Y * CALL DLACPY( 'F', N, N, B, LDA, Y, LDY ) Y( 3, 1 ) = -WY Y( 4, 1 ) = WY Y( 5, 1 ) = -WY Y( 3, 2 ) = -WY Y( 4, 2 ) = WY Y( 5, 2 ) = -WY * CALL DLACPY( 'F', N, N, B, LDA, X, LDX ) X( 1, 3 ) = -WX X( 1, 4 ) = -WX X( 1, 5 ) = WX X( 2, 3 ) = WX X( 2, 4 ) = -WX X( 2, 5 ) = -WX * * Form (A, B) * B( 1, 3 ) = WX + WY B( 2, 3 ) = -WX + WY B( 1, 4 ) = WX - WY B( 2, 4 ) = WX - WY B( 1, 5 ) = -WX + WY B( 2, 5 ) = WX + WY IF( TYPE.EQ.1 ) THEN A( 1, 3 ) = WX*A( 1, 1 ) + WY*A( 3, 3 ) A( 2, 3 ) = -WX*A( 2, 2 ) + WY*A( 3, 3 ) A( 1, 4 ) = WX*A( 1, 1 ) - WY*A( 4, 4 ) A( 2, 4 ) = WX*A( 2, 2 ) - WY*A( 4, 4 ) A( 1, 5 ) = -WX*A( 1, 1 ) + WY*A( 5, 5 ) A( 2, 5 ) = WX*A( 2, 2 ) + WY*A( 5, 5 ) ELSE IF( TYPE.EQ.2 ) THEN A( 1, 3 ) = TWO*WX + WY A( 2, 3 ) = WY A( 1, 4 ) = -WY*( TWO+ALPHA+BETA ) A( 2, 4 ) = TWO*WX - WY*( TWO+ALPHA+BETA ) A( 1, 5 ) = -TWO*WX + WY*( ALPHA-BETA ) A( 2, 5 ) = WY*( ALPHA-BETA ) A( 1, 1 ) = ONE A( 1, 2 ) = -ONE A( 2, 1 ) = ONE A( 2, 2 ) = A( 1, 1 ) A( 3, 3 ) = ONE A( 4, 4 ) = ONE + ALPHA A( 4, 5 ) = ONE + BETA A( 5, 4 ) = -A( 4, 5 ) A( 5, 5 ) = A( 4, 4 ) END IF * * Compute condition numbers * IF( TYPE.EQ.1 ) THEN * S( 1 ) = ONE / SQRT( ( ONE+THREE*WY*WY ) / $ ( ONE+A( 1, 1 )*A( 1, 1 ) ) ) S( 2 ) = ONE / SQRT( ( ONE+THREE*WY*WY ) / $ ( ONE+A( 2, 2 )*A( 2, 2 ) ) ) S( 3 ) = ONE / SQRT( ( ONE+TWO*WX*WX ) / $ ( ONE+A( 3, 3 )*A( 3, 3 ) ) ) S( 4 ) = ONE / SQRT( ( ONE+TWO*WX*WX ) / $ ( ONE+A( 4, 4 )*A( 4, 4 ) ) ) S( 5 ) = ONE / SQRT( ( ONE+TWO*WX*WX ) / $ ( ONE+A( 5, 5 )*A( 5, 5 ) ) ) * CALL DLAKF2( 1, 4, A, LDA, A( 2, 2 ), B, B( 2, 2 ), Z, 12 ) CALL DGESVD( 'N', 'N', 8, 8, Z, 12, WORK, WORK( 9 ), 1, $ WORK( 10 ), 1, WORK( 11 ), 40, INFO ) DIF( 1 ) = WORK( 8 ) * CALL DLAKF2( 4, 1, A, LDA, A( 5, 5 ), B, B( 5, 5 ), Z, 12 ) CALL DGESVD( 'N', 'N', 8, 8, Z, 12, WORK, WORK( 9 ), 1, $ WORK( 10 ), 1, WORK( 11 ), 40, INFO ) DIF( 5 ) = WORK( 8 ) * ELSE IF( TYPE.EQ.2 ) THEN * S( 1 ) = ONE / SQRT( ONE / THREE+WY*WY ) S( 2 ) = S( 1 ) S( 3 ) = ONE / SQRT( ONE / TWO+WX*WX ) S( 4 ) = ONE / SQRT( ( ONE+TWO*WX*WX ) / $ ( ONE+( ONE+ALPHA )*( ONE+ALPHA )+( ONE+BETA )*( ONE+ $ BETA ) ) ) S( 5 ) = S( 4 ) * CALL DLAKF2( 2, 3, A, LDA, A( 3, 3 ), B, B( 3, 3 ), Z, 12 ) CALL DGESVD( 'N', 'N', 12, 12, Z, 12, WORK, WORK( 13 ), 1, $ WORK( 14 ), 1, WORK( 15 ), 60, INFO ) DIF( 1 ) = WORK( 12 ) * CALL DLAKF2( 3, 2, A, LDA, A( 4, 4 ), B, B( 4, 4 ), Z, 12 ) CALL DGESVD( 'N', 'N', 12, 12, Z, 12, WORK, WORK( 13 ), 1, $ WORK( 14 ), 1, WORK( 15 ), 60, INFO ) DIF( 5 ) = WORK( 12 ) * END IF * RETURN * * End of DLATM6 * END |