1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
SUBROUTINE SLAHILB( N, NRHS, A, LDA, X, LDX, B, LDB, WORK, INFO)
! ! -- LAPACK auxiliary test routine (version 3.2.2) -- ! Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., ! Courant Institute, Argonne National Lab, and Rice University * June 2010 ! ! David Vu ! Yozo Hida ! Jason Riedy ! D. Halligan ! IMPLICIT NONE ! .. Scalar Arguments .. INTEGER N, NRHS, LDA, LDX, LDB, INFO ! .. Array Arguments .. REAL A(LDA, N), X(LDX, NRHS), B(LDB, NRHS), WORK(N) ! .. ! ! Purpose ! ======= ! ! SLAHILB generates an N by N scaled Hilbert matrix in A along with ! NRHS right-hand sides in B and solutions in X such that A*X=B. ! ! The Hilbert matrix is scaled by M = LCM(1, 2, ..., 2*N-1) so that all ! entries are integers. The right-hand sides are the first NRHS ! columns of M * the identity matrix, and the solutions are the ! first NRHS columns of the inverse Hilbert matrix. ! ! The condition number of the Hilbert matrix grows exponentially with ! its size, roughly as O(e ** (3.5*N)). Additionally, the inverse ! Hilbert matrices beyond a relatively small dimension cannot be ! generated exactly without extra precision. Precision is exhausted ! when the largest entry in the inverse Hilbert matrix is greater than ! 2 to the power of the number of bits in the fraction of the data type ! used plus one, which is 24 for single precision. ! ! In single, the generated solution is exact for N <= 6 and has ! small componentwise error for 7 <= N <= 11. ! ! Arguments ! ========= ! ! N (input) INTEGER ! The dimension of the matrix A. ! ! NRHS (input) INTEGER ! The requested number of right-hand sides. ! ! A (output) REAL array, dimension (LDA, N) ! The generated scaled Hilbert matrix. ! ! LDA (input) INTEGER ! The leading dimension of the array A. LDA >= N. ! ! X (output) REAL array, dimension (LDX, NRHS) ! The generated exact solutions. Currently, the first NRHS ! columns of the inverse Hilbert matrix. ! ! LDX (input) INTEGER ! The leading dimension of the array X. LDX >= N. ! ! B (output) REAL array, dimension (LDB, NRHS) ! The generated right-hand sides. Currently, the first NRHS ! columns of LCM(1, 2, ..., 2*N-1) * the identity matrix. ! ! LDB (input) INTEGER ! The leading dimension of the array B. LDB >= N. ! ! WORK (workspace) REAL array, dimension (N) ! ! ! INFO (output) INTEGER ! = 0: successful exit ! = 1: N is too large; the data is still generated but may not ! be not exact. ! < 0: if INFO = -i, the i-th argument had an illegal value ! ! ===================================================================== ! .. Local Scalars .. INTEGER TM, TI, R INTEGER M INTEGER I, J ! .. Parameters .. ! NMAX_EXACT the largest dimension where the generated data is ! exact. ! NMAX_APPROX the largest dimension where the generated data has ! a small componentwise relative error. INTEGER NMAX_EXACT, NMAX_APPROX PARAMETER (NMAX_EXACT = 6, NMAX_APPROX = 11) ! .. ! .. External Functions EXTERNAL SLASET INTRINSIC REAL ! .. ! .. Executable Statements .. ! ! Test the input arguments ! INFO = 0 IF (N .LT. 0 .OR. N .GT. NMAX_APPROX) THEN INFO = -1 ELSE IF (NRHS .LT. 0) THEN INFO = -2 ELSE IF (LDA .LT. N) THEN INFO = -4 ELSE IF (LDX .LT. N) THEN INFO = -6 ELSE IF (LDB .LT. N) THEN INFO = -8 END IF IF (INFO .LT. 0) THEN CALL XERBLA('SLAHILB', -INFO) RETURN END IF IF (N .GT. NMAX_EXACT) THEN INFO = 1 END IF ! Compute M = the LCM of the integers [1, 2*N-1]. The largest ! reasonable N is small enough that integers suffice (up to N = 11). M = 1 DO I = 2, (2*N-1) TM = M TI = I R = MOD(TM, TI) DO WHILE (R .NE. 0) TM = TI TI = R R = MOD(TM, TI) END DO M = (M / TI) * I END DO ! Generate the scaled Hilbert matrix in A DO J = 1, N DO I = 1, N A(I, J) = REAL(M) / (I + J - 1) END DO END DO ! Generate matrix B as simply the first NRHS columns of M * the ! identity. CALL SLASET('Full', N, NRHS, 0.0, REAL(M), B, LDB) ! Generate the true solutions in X. Because B = the first NRHS ! columns of M*I, the true solutions are just the first NRHS columns ! of the inverse Hilbert matrix. WORK(1) = N DO J = 2, N WORK(J) = ( ( (WORK(J-1)/(J-1)) * (J-1 - N) ) /(J-1) ) $ * (N +J -1) END DO DO J = 1, NRHS DO I = 1, N X(I, J) = (WORK(I)*WORK(J)) / (I + J - 1) END DO END DO END |