1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
|
/*
* Automatically Tuned Linear Algebra Software v3.10.1
* (C) Copyright 2000 Antoine P. Petitet
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions, and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the ATLAS group or the names of its contributers may
* not be used to endorse or promote products derived from this
* software without specific written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ATLAS GROUP OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#include "atlas_misc.h"
#include "atlas_tst.h"
static void ATL_ladd
(
int * J,
int * K,
int * I
)
{
/*
* Purpose
* =======
*
* ATL_ladd adds without carry two long positive integers K and J an
* put the result into I. The long integers I, J, K are encoded on 31
* bits using an array of 2 integers. The 16-lower bits are stored i
* the first entry of each array, the 15-higher bits in the second
* entry.
*
* Arguments
* =========
*
* J (local input) int *
* On entry, J is an integer array of dimension 2 containing the
* encoded long integer J.
*
* K (local input) int *
* On entry, K is an integer array of dimension 2 containing the
* encoded long integer K.
*
* I (local output) int *
* On entry, I is an integer array of dimension 2. On exit, this
* array contains the encoded long integer result.
*
* ---------------------------------------------------------------------
*/
int itmp0 = K[0] + J[0], itmp1;
/*
* K[1] K[0] K I[0] = (K[0]+J[0]) % 2^16
* 0XXX XXXX carry = (K[0]+J[0]) / 2^16
*
* + J[1] J[0] J I[1] = K[1] + J[1] + carry
* 0XXX XXXX I[1] = I[1] % 2^15
* -------------
* I[1] I[0]
* 0XXX XXXX I
*/
itmp1 = itmp0 >> 16; I[0] = itmp0 - ( itmp1 << 16 );
itmp0 = itmp1 + K[1] + J[1]; I[1] = itmp0 - (( itmp0 >> 15 ) << 15);
}
static void ATL_lmul
(
int * K,
int * J,
int * I
)
{
/*
* Purpose
* =======
*
* ATL_lmul multiplies without carry two long positive integers K and J
* and put the result into I. The long integers I, J, K are encoded on
* 31 bits using an array of 2 integers. The 16-lower bits are stored in
* the first entry of each array, the 15-higher bits in the second entry
* of each array. For efficiency purposes, the intrisic modulo function
* is inlined.
*
* Arguments
* =========
*
* K (local input) int *
* On entry, K is an integer array of dimension 2 containing the
* encoded long integer K.
*
* J (local input) int *
* On entry, J is an integer array of dimension 2 containing the
* encoded long integer J.
*
* I (local output) int *
* On entry, I is an integer array of dimension 2. On exit, this
* array contains the encoded long integer result.
*
* ---------------------------------------------------------------------
*/
static int ipow30 = ( 1 << 30 );
int kt, lt;
/*
* K[1] K[0] K kt = K[0]*J[0]
* 0XXX XXXX if(kt < 0) kt += 2^31
* x I[0] = kt % 2^16
* lt = K[0]*J[1] + K[1]*J[0]
* J[1] J[0] J if(lt < 0) lt += 2^31
* 0XXX XXXX kt = (kt / 2^16) + lt
* -------------- if(kt < 0) kt += 2^31
* I[1] I[0] I[1] = kt % 2^15
* 0XXX XXXX I
*/
kt = K[0] * J[0]; if( kt < 0 ) kt = ( kt + ipow30 ) + ipow30;
I[0] = kt - ( ( kt >> 16 ) << 16 );
lt = K[0] * J[1] + K[1] * J[0];
if( lt < 0 ) lt = ( lt + ipow30 ) + ipow30;
kt = ( kt >> 16 ) + lt;
if( kt < 0 ) kt = ( kt + ipow30 ) + ipow30;
I[1] = kt - ( ( kt >> 15 ) << 15 );
}
static void ATL_setran
(
const int OPTION,
int * IRAN
)
{
/*
* Purpose
* =======
*
* ATL_setran initializes the random generator with the encoding of the
* first number X(0) in the sequence, and the constants a and c used to
* compute the next element in the sequence: X(n+1) = a*X(n) + c. X(0),
* a and c are stored in the static variables irand, ias and ics. When
* OPTION is 0 (resp. 1 and 2), irand (resp. ia and ic) is set to the
* values of the input array IRAN. When OPTION is 3, IRAN is set to the
* current value of irand, and irand is then incremented.
*
* Arguments
* =========
*
* OPTION (local input) const int
* On entry, OPTION is an integer that specifies the operations
* to be performed on the random generator as specified above.
*
* IRAN (local input/output) int *
* On entry, IRAN is an array of dimension 2, that contains the
* 16-lower and 15-higher bits of a random number.
*
* ---------------------------------------------------------------------
*/
static int ias[2], ics[2], irand[2];
int j[2];
if( OPTION == 3 )
{ /* return current value */
IRAN[0] = irand[0]; IRAN[1] = irand[1];
ATL_lmul( irand, ias, j ); /* j = irand * ias; */
ATL_ladd( j, ics, irand ); /* irand = j + ics; */
}
else if( OPTION == 0 ) { irand[0] = IRAN[0]; irand[1] = IRAN[1]; }
else if( OPTION == 1 ) { ias [0] = IRAN[0]; ias [1] = IRAN[1]; }
else if( OPTION == 2 ) { ics [0] = IRAN[0]; ics [1] = IRAN[1]; }
}
static void ATL_xjumpm
(
const int JUMPM,
int * MULT,
int * IADD,
int * IRANN,
int * IRANM,
int * IAM,
int * ICM
)
{
/*
* Purpose
* =======
*
* ATL_xjumpm computes the constants A and C to jump JUMPM numbers in
* the random sequence: X(n+JUMPM) = A*X(n)+C. The constants encoded in
* MULT and IADD specify how to jump from one entry in the sequence to
* the next.
*
* Arguments
* =========
*
* JUMPM (local input) const int
* On entry, JUMPM specifies the number of entries in the
* sequence to jump over. When JUMPM is less or equal than zero,
* A and C are not computed, IRANM is set to IRANN corresponding
* to a jump of size zero.
*
* MULT (local input) int *
* On entry, MULT is an array of dimension 2, that contains the
* 16-lower and 15-higher bits of the constant a to jump from
* X(n) to X(n+1) = a*X(n) + c in the random sequence.
*
* IADD (local input) int *
* On entry, IADD is an array of dimension 2, that contains the
* 16-lower and 15-higher bits of the constant c to jump from
* X(n) to X(n+1) = a*X(n) + c in the random sequence.
*
* IRANN (local input) int *
* On entry, IRANN is an array of dimension 2. that contains the
* 16-lower and 15-higher bits of the encoding of X(n).
*
* IRANM (local output) int *
* On entry, IRANM is an array of dimension 2. On exit, this
* array contains respectively the 16-lower and 15-higher bits
* of the encoding of X(n+JUMPM).
*
* IAM (local output) int *
* On entry, IAM is an array of dimension 2. On exit, when JUMPM
* is greater than zero, this array contains the encoded
* constant A to jump from X(n) to X(n+JUMPM) in the random
* sequence. IAM(0:1) contains respectively the 16-lower and
* 15-higher bits of this constant A. When JUMPM is less or
* equal than zero, this array is not referenced.
*
* ICM (local output) int *
* On entry, ICM is an array of dimension 2. On exit, when JUMPM
* is greater than zero, this array contains the encoded
* constant C to jump from X(n) to X(n+JUMPM) in the random
* sequence. ICM(0:1) contains respectively the 16-lower and
* 15-higher bits of this constant C. When JUMPM is less or
* equal than zero, this array is not referenced.
*
* ---------------------------------------------------------------------
*/
int j[2], k;
if( JUMPM > 0 )
{
IAM[0] = MULT[0]; IAM[1] = MULT[1]; /* IAM = MULT; */
ICM[0] = IADD[0]; ICM[1] = IADD[1]; /* ICM = IADD; */
for( k = 1; k <= JUMPM-1; k++ )
{
ATL_lmul( IAM, MULT, j ); /* j = IAM * MULT; */
IAM[0] = j[0]; IAM[1] = j[1]; /* IAM = j; */
ATL_lmul( ICM, MULT, j ); /* j = ICM * MULT; */
ATL_ladd( IADD, j, ICM ); /* ICM = IADD + j; */
}
ATL_lmul( IRANN, IAM, j ); /* j = IRANN * IAM; */
ATL_ladd( j, ICM, IRANM ); /* IRANM = j + ICM; */
}
else
{ /* IRANM = IRANN */
IRANM[0] = IRANN[0]; IRANM[1] = IRANN[1];
}
}
void ATL_srand(int iseed)
{
int iadd[2], ia1[2], ic1[2], iran1[2], jseed[2], mult[2];
mult [0] = 20077; mult[1] = 16838;
iadd [0] = 12345; iadd [1] = 0;
jseed[0] = iseed; jseed[1] = (iseed>>16);
ATL_xjumpm( 1, mult, iadd, jseed, iran1, ia1, ic1 );
ATL_setran( 0, iran1 ); ATL_setran( 1, ia1 ); ATL_setran( 2, ic1 );
}
int ATL_rand(void)
{
int j[2];
ATL_setran( 3, j );
return(j[0] + ((j[1])<<16));
}
|