next up previous contents
Next: Examples Up: Specification of the Model Previous: Specification of the Model   Contents


State Space, Initial Distribution and Transition Probabilities

Definition
 

Remarks
 

Theorem 2.1   The sequence $ \{X_n\}$ of $ E$-valued random variables is a Markov chain if and only if there is a stochastic matrix $ {\mathbf{P}}=(p_{ij})$ such that

$\displaystyle P(X_{n}=i_n\mid X_{n-1}=i_{n-1},\ldots,X_0=i_{0}) =p_{i_{n-1}i_n}$ (4)

for any $ n=1,2,\ldots$ and $ i_0,i_1,\ldots,i_n\in E$ such that $ P(
X_{n-1}=i_{n-1},\ldots,X_0=i_{0})>0$.

Proof
 

Corollary 2.1   Let $ \{X_n\}$ be a Markov chain. Then,

$\displaystyle P(X_{n}=i_n\mid X_{n-1}=i_{n-1},\ldots,X_0=i_{0})= P(X_{n}=i_n\mid X_{n-1}=i_{n-1})$ (5)

holds whenever $ P(
X_{n-1}=i_{n-1},\ldots,X_0=i_{0})>0$.

Proof
 

Remarks
 


next up previous contents
Next: Examples Up: Specification of the Model Previous: Specification of the Model   Contents
Ursa Pantle 2006-07-20