Some I/O Hack

The right way to support I/O functionality would require function calls. In the meantime we provide some limited I/O support through two operatos. The input operator '$>' can be used to read-in an unsigned integer into a l-value expression. And the output operator '$<' can be used to print an assignment expression.

In the grammar we integrate this hack such that it easily can be removed once we have proper function calls:

\[\begin{array}{rcl}\text{input-sequence} & = & \{\; $> \; \text{assignment-expr}\; \texttt{;}\; |\; $< \; \text{assignment-expr}\; \texttt{;}\; |\; \text{expr-statement}\; \}\; \\\text{expr-statement} & = & \text{assignment-expr}\; \texttt{;}\; \\\text{assignment-expr} & = & \text{expr}\; [\; \texttt{=}\; \text{assignment-expr}\; ]\; \\\text{expr} & = & \text{term}\; \{\; (\; \texttt{"+"}\; |\; \texttt{"-"}\; )\; \text{term} \} \\\text{term} & = & \text{unary-expr}\; \{\; (\; \texttt{"*"}\; |\; \texttt{"/"}\; |\; \texttt{"%"}\; )\; \text{unary-expr} \} \\\text{unary-expr} & = & \text{factor}\; |\; (\; \texttt{"+"}\; |\; \texttt{"-"}\;)\; \text{unary-expr} \\\text{factor} & = & \text{identifier}\; \\ & | & \text{dec-literal}\; \\ & | & \text{hex-literal}\; \\ & | & \text{oct-literal}\; \\ & | & \texttt{"("}\; \text{assignment-expr}\; \texttt{")"}\; \\\end{array}\]

Assembly Functions for I/O

Below you find assembly code for funtion get_uint64() that reads-in and returns an unsigned value:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    .equ    FP,         1
    .equ    SP,         2
    .equ    RET_ADDR,   3

    .equ    ret,        0
    .equ    fp,         ret + 8
    .equ    rval,       fp + 8
    .equ    fparam0,    rval + 8


//  function:   %RET_VAL get_uint64()
    .text
get_uint64:
    // prologue
    movq    %RET_ADDR,  ret(%SP)
    movq    %FP,        fp(%SP)
    addq    0,          %SP,        %FP
    subq    8 * 2,      %SP,        %SP

    .equ    dest,   6
    .equ    ch,     dest + 1

    movq    %0,     %dest

.get_uint64.read:
    getc    %ch
#   if %ch < '0' then we are done
    subq    '0',    %ch,    %0
    jb      .get_uint64.ret
#   if %ch > '9' then we are done
    subq    '9',    %ch,    %0
    ja      .get_uint64.ret

    subq    '0',    %ch,    %ch
    imulq   10,     %dest,  %dest
    addq    %ch,    %dest,  %dest
    jmp     .get_uint64.read

.get_uint64.ret:
    movq    %dest,  rval(%FP)

    // epilogue
    movq        %FP,            %SP
    movq        fp(%SP),        %FP
    movq        ret(%SP),       %RET_ADDR
    jmp         %RET_ADDR,      %0

And function print_uint64() that prints an unsigned integer passed as parameter:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    .equ    FP,         1
    .equ    SP,         2
    .equ    RET_ADDR,   3

    .equ    ret,        0
    .equ    fp,         ret + 8
    .equ    rval,       fp + 8
    .equ    fparam0,    rval + 8


// function:    void    print_uint64(val)
// static char[20] buf;
    .bss
.print_uint64.buf:
    .space  20

    .text
print_uint64:
    // prologue
    movq    %RET_ADDR,  ret(%SP)
    movq    %FP,        fp(%SP)
    addq    0,          %SP,        %FP
    subq    8 * 2,      %SP,        %SP

    .equ    buf,        6
    .equ    val,        buf + 1
    .equ    digit,      val + 1
    .equ    p,          digit + 1

    ldpa    .print_uint64.pool,     %buf
    ldfp    (%buf),                 %buf
    movq    %buf,                   %p

    movq    fparam0(%FP),           %val

.print_uint64.get_digit:
    divq    10,     %val,   %val
    addq    '0',    %digit, %digit
    movb    %digit, (%p)
    addq    1,      %p,     %p
    subq    0,      %val,   %0
    jnz     .print_uint64.get_digit

.print_uint64.print_digit:
    subq    1,      %p,     %p
    movzbq  (%p),   %digit
    putc    %digit
    subq    %buf,      %p,     %0
    jnz     .print_uint64.print_digit

    // epilogue
    movq        %FP,            %SP
    movq        fp(%SP),        %FP
    movq        ret(%SP),       %RET_ADDR
    jmp         %RET_ADDR,      %0

    .align 8
.print_uint64.pool:
    .quad   .print_uint64.buf

Of course this code needs to be “available” for the assembly code that our compiler produces. We have several choices:

  • The complete source code of both function could be generated by genFooter().

  • We can generate object files getuint64.o and printuint64.o``. The object files generated from our assembler output can be linked against these.

  • The ULM assembler can process a sequence of assembly files and treats this input sequence as-if it was one large source file.

For now the last option listed above is the simplest. If the compiler generated foo.s then we invoke the assembler with

1
path-to-ulm/ulmas foo.s getuint64.s printuint64.s

In a subsequent section you will find a makefile that can be used in a separate directory for testing our compiler. In the makefile we can hide such nasty details.

Changes for the Lexer

We at least need three more token kinds for '$', '<' and '>'. But now is a good opportunity to added even a few more:

end of input

EOI

bad token

BAD_TOKEN

[1-9][0-9]*

DEC_LITERAL

0x[0-9a-fA-F]+

HEX_LITERAL

0[0-7]*

OCT_LITERAL

&

AMPERSAND

&&

AMPERSAND2

*

ASTERISK

^

CARET

$

DOLLAR

=

EQUAL

==

EQUAL2

!

NOT

!=

NOT_EQUAL

>

GREATER

>=

GREATER_EQUAL

<

LESS

<=

LESS_EQUAL

(

LPAREN

-

MINUS

%

PERCENT

+

PLUS

)

RPAREN

;

SEMICOLON

/

SLASH

~

TILDE

|

VBAR

||

VBAR2

[a-zA-Z_][a-zA-Z_0-9]*

IDENTIFIER

Here the applied changes to tokenkind.txt and lexer.c:

EOI
BAD_TOKEN
DEC_LITERAL
HEX_LITERAL
OCT_LITERAL
AMPERSAND
AMPERSAND2
ASTERISK
CARET
DOLLAR
EQUAL
EQUAL2
NOT
NOT_EQUAL
GREATER
GREATER_EQUAL
LESS
LESS_EQUAL
LPAREN
MINUS
PERCENT
PLUS
RPAREN
SEMICOLON
SLASH
TILDE
VBAR
VBAR2
IDENTIFIER
#include <stdbool.h>
#include <stdio.h>

#include "finalize.h"
#include "lexer.h"

struct Token token;

static void
cleanup(void)
{
    releaseStr(&token.val);
}

//------------------------------------------------------------------------------

// position of current character ch
static struct TokenPos curr = {
    1,
    0,
};

static int ch;

static int
nextCh(void)
{
    ++curr.col;
    ch = getchar();
    if (ch == '\n') {
        ++curr.line;
        curr.col = 0;
    }
    return ch;
}

static bool
isWhiteSpace(int ch)
{
    return ch == ' ' || ch == '\t';
}

static bool
isDecDigit(int ch)
{
    return ch >= '0' && ch <= '9';
}

static bool
isOctDigit(int ch)
{
    return ch >= '0' && ch <= '7';
}

static bool
isHexDigit(int ch)
{
    return isDecDigit(ch) || (ch >= 'a' && ch <= 'f') ||
           (ch >= 'A' && ch <= 'F');
}

static bool
isLetter(int ch)
{
    return ((ch >= 'a') && (ch <= 'z')) || ((ch >= 'A' && ch <= 'Z')) ||
           ch == '_';
}

enum TokenKind
getToken(void)
{
    static bool first = true;
    if (first) {
        first = false;
        finalizeRegister(cleanup);
    }

    // init ch, skip white spaces and newlines
    while (ch == 0 || isWhiteSpace(ch) || ch == '\n') {
        nextCh();
    }

    token.pos.line = curr.line;
    token.pos.col = curr.col;

    clearStr(&token.val);

    if (ch == EOF) {
        return token.kind = EOI;
    } else if (isDecDigit(ch)) {
        // parse literal
        if (ch == '0') {
            appendCharToStr(&token.val, ch);
            nextCh();
            if (ch == 'x') {
                appendCharToStr(&token.val, ch);
                nextCh();
                if (isHexDigit(ch)) {
                    while (isHexDigit(ch)) {
                        appendCharToStr(&token.val, ch);
                        nextCh();
                    }
                    return token.kind = HEX_LITERAL;
                }
                return token.kind = BAD_TOKEN;
            }
            while (isOctDigit(ch)) {
                appendCharToStr(&token.val, ch);
                nextCh();
            }
            return token.kind = OCT_LITERAL;
        } else if (isDecDigit(ch)) {
            while (isDecDigit(ch)) {
                appendCharToStr(&token.val, ch);
                nextCh();
            }
            return token.kind = DEC_LITERAL;
        }
    } else if (ch == '&') {
        appendCharToStr(&token.val, ch);
        nextCh();
        if (ch == '&') {
            appendCharToStr(&token.val, ch);
            nextCh();
            return token.kind = AMPERSAND2;
        }
        return token.kind = AMPERSAND;
    } else if (ch == '*') {
        appendCharToStr(&token.val, ch);
        nextCh();
        return token.kind = ASTERISK;
    } else if (ch == '^') {
        appendCharToStr(&token.val, ch);
        nextCh();
        return token.kind = CARET;
    } else if (ch == '$') {
        appendCharToStr(&token.val, ch);
        nextCh();
        return token.kind = DOLLAR;
    } else if (ch == '=') {
        appendCharToStr(&token.val, ch);
        nextCh();
        if (ch == '=') {
            appendCharToStr(&token.val, ch);
            nextCh();
            return token.kind = EQUAL2;
        }
        return token.kind = EQUAL;
    } else if (ch == '!') {
        appendCharToStr(&token.val, ch);
        nextCh();
        if (ch == '=') {
            appendCharToStr(&token.val, ch);
            nextCh();
            return token.kind = NOT_EQUAL;
        }
        return token.kind = NOT;
    } else if (ch == '>') {
        appendCharToStr(&token.val, ch);
        nextCh();
        if (ch == '=') {
            appendCharToStr(&token.val, ch);
            nextCh();
            return token.kind = GREATER_EQUAL;
        }
        return token.kind = GREATER;
    } else if (ch == '<') {
        appendCharToStr(&token.val, ch);
        nextCh();
        if (ch == '=') {
            appendCharToStr(&token.val, ch);
            nextCh();
            return token.kind = LESS_EQUAL;
        }
        return token.kind = LESS;
    } else if (ch == '(') {
        appendCharToStr(&token.val, ch);
        nextCh();
        return token.kind = LPAREN;
    } else if (ch == '-') {
        appendCharToStr(&token.val, ch);
        nextCh();
        return token.kind = MINUS;
    } else if (ch == '%') {
        appendCharToStr(&token.val, ch);
        nextCh();
        return token.kind = PERCENT;
    } else if (ch == '+') {
        appendCharToStr(&token.val, ch);
        nextCh();
        return token.kind = PLUS;
    } else if (ch == ')') {
        appendCharToStr(&token.val, ch);
        nextCh();
        return token.kind = RPAREN;
    } else if (ch == ';') {
        appendCharToStr(&token.val, ch);
        nextCh();
        return token.kind = SEMICOLON;
    } else if (ch == '/') {
        appendCharToStr(&token.val, ch);
        nextCh();
        return token.kind = SLASH;
    } else if (ch == '~') {
        appendCharToStr(&token.val, ch);
        nextCh();
        return token.kind = TILDE;
    } else if (ch == '|') {
        appendCharToStr(&token.val, ch);
        nextCh();
        if (ch == '|') {
            appendCharToStr(&token.val, ch);
            nextCh();
            return token.kind = VBAR2;
        }
        return token.kind = VBAR;
    } else if (isLetter(ch)) {
        do {
            appendCharToStr(&token.val, ch);
            nextCh();
        } while (isLetter(ch) || isDecDigit(ch));
        return token.kind = IDENTIFIER;
    }

    nextCh();
    return token.kind = BAD_TOKEN;
}

The test for the lexer was changed so that a bad token triggers an assertion failure. Here a minimalistic test run for the lexer:

theon$ make xtest_lexer
gcc -o xgen_tokenkind xgen_tokenkind.c -lm
./xgen_tokenkind tokenkind.txt gen_tokenkind.h gen_strtokenkind.c
gcc -c -Wall -Wcast-qual  -MT xtest_lexer.o -MMD -MP -MF xtest_lexer.c.d xtest_lexer.c
gcc -c -Wall -Wcast-qual  -MT expr.o -MMD -MP -MF expr.c.d expr.c
gcc -c -Wall -Wcast-qual  -MT finalize.o -MMD -MP -MF finalize.c.d finalize.c
gcc -c -Wall -Wcast-qual  -MT gen.o -MMD -MP -MF gen.c.d gen.c
gcc -c -Wall -Wcast-qual  -MT lexer.o -MMD -MP -MF lexer.c.d lexer.c
gcc -c -Wall -Wcast-qual  -MT memregion.o -MMD -MP -MF memregion.c.d memregion.c
gcc -c -Wall -Wcast-qual  -MT parser.o -MMD -MP -MF parser.c.d parser.c
gcc -c -Wall -Wcast-qual  -MT str.o -MMD -MP -MF str.c.d str.c
gcc -c -Wall -Wcast-qual  -MT sym.o -MMD -MP -MF sym.c.d sym.c
gcc -c -Wall -Wcast-qual  -MT tokenkind.o -MMD -MP -MF tokenkind.c.d tokenkind.c
gcc -c -Wall -Wcast-qual  -MT ustr.o -MMD -MP -MF ustr.c.d ustr.c
gcc -o xtest_lexer xtest_lexer.o expr.o finalize.o gen.o lexer.o memregion.o parser.o str.o sym.o tokenkind.o ustr.o -lm
theon$ cat test_lexer.in | ./xtest_lexer
1.1: IDENTIFIER 'a'
1.3: EQUAL '='
1.5: DEC_LITERAL '5'
1.6: SEMICOLON ';'
2.1: IDENTIFIER 'b'
2.3: EQUAL '='
2.5: DEC_LITERAL '42'
2.7: SEMICOLON ';'
3.1: IDENTIFIER 'c'
3.3: EQUAL '='
3.5: LPAREN '('
3.6: IDENTIFIER 'a'
3.8: PLUS '+'
3.10: IDENTIFIER 'b'
3.11: RPAREN ')'
3.13: ASTERISK '*'
3.14: DEC_LITERAL '2'
3.15: SEMICOLON ';'
4.1: DEC_LITERAL '123'
4.5: OCT_LITERAL '0123'
4.10: HEX_LITERAL '0xaB12'
4.17: IDENTIFIER 'abc'
4.21: PLUS '+'
4.22: MINUS '-'
4.23: SLASH '/'
4.24: ASTERISK '*'
4.25: PERCENT '%'
4.26: CARET '^'
4.27: LPAREN '('
4.28: RPAREN ')'
5.1: DOLLAR '$'
5.3: EQUAL '='
5.5: EQUAL2 '=='
5.8: NOT '!'
5.9: TILDE '~'
5.10: NOT_EQUAL '!='
5.12: GREATER '>'
5.13: GREATER_EQUAL '>='
5.15: LESS '<'
5.16: LESS_EQUAL '<='
5.18: LPAREN '('
5.19: RPAREN ')'
5.20: VBAR '|'
5.22: VBAR2 '||'
5.25: TILDE '~'
theon$ 

The test input for the lexer was changed to

a = 5;
b = 42;
c = (a + b) *2;
123 0123 0xaB12 abc +-/*%^()
$ = == !~!=>>=<<=()| || ~

Changes in the Code Generation Interface

The code generation interface now declares four more functions:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
#ifndef ABC_GEN_H
#define ABC_GEN_H

// ...

// fetch / store quad word (8 bytes)
void genFetch(GenReg addr, GenReg dest);
void genFetchDispl(int64_t displ, GenReg addr, GenReg dest); // new
void genStore(GenReg src, GenReg addr);
void genStoreDispl(GenReg src, int64_t displ, GenReg addr); // new

// ...

// IO hack
void genOutHack(GenReg src); // new
void genInHack(GenReg dest); // new

#endif // ABC_GEN_H

Functions genFetchDispl() and genStoreDispl() can be used for fetch and store instructions where a displacement is needed. For example, genFetchDispl(16, 8, 9) generates

1
    movq 16(%8), %9

If the displacement can not be encoded code get generates to compute the displaced address and for fetching data from there. For example, genFetchDispl(256, 8, 9) might acquire %6 as temporary register and generate

1
2
3
        ldzwq 0x100, %6
        addq %6, %8, %6
        movq (%6), %9

Function genHackOut() generates code to call a function for printing the unsigned integer in the register specified by src.

Function genInHack() generates code to call a function for reading-in an unsigned integer and for storing it in the register specified by dest.

Here the complete header and source file:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#ifndef ABC_GEN_H
#define ABC_GEN_H

#include <stdint.h>
#include <stdio.h>

// register type
typedef uint8_t GenReg;

// output needs to be set before using the rest of the interface
void genSetOutput(FILE *out);

// generate data
void genLabeledUInt(const char *label, uint64_t val);

// header / footer
void genHeader(void);
void genFooter(void);

// set active segment
void genText(void);
void genData(void);
void genBSS(void);

// acquire / release register
GenReg genGetReg(void);
void genUngetReg(GenReg reg);

// load literal into register
void genLoadUInt(uint64_t val, GenReg reg);
void genLoadLabel(const char *label, GenReg reg);

// fetch / store quad word (8 bytes)
void genFetch(GenReg addr, GenReg dest);
void genFetchDispl(int64_t displ, GenReg addr, GenReg dest);
void genStore(GenReg src, GenReg addr);
void genStoreDispl(GenReg src, int64_t displ, GenReg addr);

// supported instruction
enum GenOp
{
    GEN_OP2R_BEGIN,
    GEN_UNARYMINUS_R,
    GEN_OP2R_END,

    GEN_OP3R_BEGIN = GEN_OP2R_END,
    GEN_ADD_R = GEN_OP3R_BEGIN,   // addition
    GEN_SUB_R,                    // subtraction
    GEN_IMUL_R,                   // multiplication
    GEN_DIV_R,                    // division
    GEN_MOD_R,                    // modulo
    GEN_OP3R_END,

    GEN_OP3I_BEGIN = GEN_OP3R_END,
    GEN_ADD_I = GEN_OP3I_BEGIN,
    GEN_SUB_I,
    GEN_IMUL_I,
    GEN_DIV_I,
    GEN_MOD_I,
    GEN_OP3I_END,
};

// 2 address instructions
void genOp2r(enum GenOp op, GenReg reg0, GenReg reg1);

// 3 address instructions
void genOp3r(enum GenOp op, GenReg reg0, GenReg reg1, GenReg reg2);
void genOp3i(enum GenOp op, uint64_t val, GenReg reg1, GenReg reg2);

// IO hack
void genOutHack(GenReg src);
void genInHack(GenReg dest);

#endif // ABC_GEN_H
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
#include <assert.h>
#include <inttypes.h>
#include <stdbool.h>
#include <stdio.h>

#include "finalize.h"
#include "gen.h"

enum {
    ZERO = 0,
    FP = 1,
    SP = 2,
    RET_ADDR = 3,
    FUNC_ADDR = 4,
};


// output needs to be set before using the rest of the interface
static FILE *out;

void
genSetOutput(FILE *out_)
{
    out = out_;
}

// acquire / release register
static bool usedReg[256];

static void
check(void)
{
    GenReg reg = 0;
    do {
        if (usedReg[reg]) {
            fprintf(stderr, "warning: register %" PRIu8 " not released\n", reg);
        }
        ++reg;
    } while (reg != 255);
}

GenReg
genGetReg(void)
{
    static bool first = true;
    if (first) {
        first = false;
        finalizeRegister(check);
    }
    GenReg reg = 5;
    while (usedReg[++reg]) {
    }
    if (reg < 6) {
        fprintf(stderr, "genGetReg: out of registers\n");
        finalizeExit(1);
    }
    usedReg[reg] = true;
    return reg;
}

void
genUngetReg(GenReg reg)
{
    assert(usedReg[reg]);
    usedReg[reg] = false;
}

// internal print stuff
static void
printInstr(const char *instr)
{
    assert(out);
    fprintf(out, "\t%s ", instr);
}

static void
printUInt_(uint64_t val, const char *prefix, const char *suffix)
{
    assert(out);
    if (prefix) {
        fprintf(out, "%s", prefix);
    }
    fprintf(out, "0x%" PRIx64, val);
    if (suffix) {
        fprintf(out, "%s", suffix);
    }
}

static void
printUInt(uint64_t val)
{
    printUInt_(val, 0, 0);
}

static void
printReg(GenReg reg)
{
    assert(out);
    fprintf(out, "%%%" PRIu8, reg);
}

static void
printMem(GenReg reg)
{
    assert(out);
    fprintf(out, "(%%%" PRIu8 ")", reg);
}

static void
printDisplMem(int64_t displ, GenReg reg)
{
    assert(out);
    fprintf(out, "%" PRId64 "(%%%" PRIu8 ")", displ, reg);
}

static void
printLabel(const char *label, const char *prefix, const char *suffix)
{
    assert(out);
    if (prefix) {
        fprintf(out, "%s", prefix);
    }
    fprintf(out, "%s", label);
    if (suffix) {
        fprintf(out, "%s", suffix);
    }
}

static void
printLabelDef(const char *label)
{
    assert(out);
    fprintf(out, "%s:\n", label);
}

static void
printComma(void)
{
    assert(out);
    fprintf(out, ", ");
}

static void
printNl(void)
{
    assert(out);
    fprintf(out, "\n");
}

// header / footer
void
genHeader(void)
{
    printInstr("ldzwq");
    printUInt(0);
    printComma();
    printReg(SP);
    printNl();
}

void
genFooter(void)
{
    printInstr("halt");
    printReg(0);
    printNl();
}

// set active segment
void
genText(void)
{
    printInstr(".text");
    printNl();
}

void
genData(void)
{
    printInstr(".data");
    printNl();
}

void
genBSS(void)
{
    printInstr(".bss");
    printNl();
}

// generate data
void
genLabeledUInt(const char *label, uint64_t val)
{
    printInstr(".align");
    printUInt(8);
    printNl();
    printLabelDef(label);
    printInstr(".quad");
    printUInt(val);
    printNl();
}

// load literal into register
void
genLoadUInt(uint64_t val, GenReg reg)
{
    if (val <= 0xFFFFu) {
        printInstr("ldzwq");
        printUInt(val);
        printComma();
        printReg(reg);
        printNl();
    } else if (val <= 0xFFFFFFFFu) {
        printInstr("ldzwq");
        printUInt_(val, "@w1(", ")");
        printComma();
        printReg(reg);
        printNl();
        printInstr("shldwq");
        printUInt_(val, "@w0(", ")");
        printComma();
        printReg(reg);
        printNl();
    } else {
        printInstr("ldzwq");
        printUInt_(val, "@w3(", ")");
        printComma();
        printReg(reg);
        printNl();
        printInstr("shldwq");
        printUInt_(val, "@w2(", ")");
        printComma();
        printReg(reg);
        printNl();
        printInstr("shldwq");
        printUInt_(val, "@w1(", ")");
        printComma();
        printReg(reg);
        printNl();
        printInstr("shldwq");
        printUInt_(val, "@w0(", ")");
        printComma();
        printReg(reg);
        printNl();
    }
}

void
genLoadLabel(const char *label, GenReg reg)
{
    printInstr("ldzwq");
    printLabel(label, "@w3(", ")");
    printComma();
    printReg(reg);
    printNl();
    printInstr("shldwq");
    printLabel(label, "@w2(", ")");
    printComma();
    printReg(reg);
    printNl();
    printInstr("shldwq");
    printLabel(label, "@w1(", ")");
    printComma();
    printReg(reg);
    printNl();
    printInstr("shldwq");
    printLabel(label, "@w0(", ")");
    printComma();
    printReg(reg);
    printNl();
}

// load / fetch quad word (8 bytes)
void
genFetch(GenReg addr, GenReg dest)
{
    printInstr("movq");
    printMem(addr);
    printComma();
    printReg(dest);
    printNl();
}

void
genFetchDispl(int64_t displ, GenReg addr, GenReg dest)
{
    if (displ >= -128 && displ < 128) {
        printInstr("movq");
        printDisplMem(displ, addr);
        printComma();
        printReg(dest);
        printNl();
    } else {
        // acquire new register and use it to store displ + addr
        GenReg displAddr = genGetReg();
        genLoadUInt(displ, displAddr); // ok, we use two's complenent for signed
        genOp3r(GEN_ADD_R, displAddr, addr, displAddr);
        genFetch(displAddr, dest);
        genUngetReg(displAddr);
    }
}


void
genStore(GenReg src, GenReg addr)
{
    printInstr("movq");
    printReg(src);
    printComma();
    printMem(addr);
    printNl();
}

void
genStoreDispl(GenReg src, int64_t displ, GenReg addr)
{
    if (displ >= -128 && displ < 128) {
        printInstr("movq");
        printReg(src);
        printComma();
        printDisplMem(displ, addr);
        printNl();
    } else {
        // acquire new register and use it to store displ + addr
        GenReg displAddr = genGetReg();
        genLoadUInt(displ, displAddr); // ok, we use two's complenent for signed
        genOp3r(GEN_ADD_R, displAddr, addr, displAddr);
        genStore(src, displAddr);
        genUngetReg(displAddr);
    }
}

// 2 address instructions
void
genOp2r(enum GenOp op, GenReg reg0, GenReg reg1)
{
    assert(op >= GEN_OP2R_BEGIN && op < GEN_OP2R_END);

    if (op == GEN_UNARYMINUS_R) {
        printInstr("subq");
        printReg(reg0);
        printComma();
        printReg(ZERO);
        printComma();
        printReg(reg1);
        printNl();
        return;
    } else {
        assert(0);
    }
}

// 3 address instructions
void
genOp3r(enum GenOp op, GenReg reg0, GenReg reg1, GenReg reg2)
{
    assert(op >= GEN_OP3R_BEGIN && op < GEN_OP3R_END);

    GenReg reg2_ = reg2;

    if (op == GEN_ADD_R) {
        printInstr("addq");
    } else if (op == GEN_SUB_R) {
        printInstr("subq");
    } else if (op == GEN_IMUL_R) {
        printInstr("imulq");
    } else if (op == GEN_DIV_R || op == GEN_MOD_R) {
        printInstr("divq");
        reg2 = 4;
    } else {
        assert(0);
    }
    printReg(reg0);
    printComma();
    printReg(reg1);
    printComma();
    printReg(reg2);
    printNl();

    if (op == GEN_DIV_R || op == GEN_MOD_R) {
        printInstr("movq");
        printReg(op == GEN_DIV_R ? 4 : 5);
        printComma();
        printReg(reg2_);
        printNl();
    }
}

void
genOp3i(enum GenOp op, uint64_t val, GenReg reg1, GenReg reg2)
{
    assert(op >= GEN_OP3I_BEGIN && op < GEN_OP3I_END);

    if (val > 255) {
        GenReg tmp = genGetReg();
        genLoadUInt(val, tmp);
        genOp3r(op - GEN_OP3I_BEGIN + GEN_OP3R_BEGIN, tmp, reg1, reg2);
        genUngetReg(tmp);
        return;
    }

    GenReg reg2_ = reg2;

    if (op == GEN_ADD_I) {
        printInstr("addq");
    } else if (op == GEN_SUB_I) {
        printInstr("subq");
    } else if (op == GEN_IMUL_I) {
        printInstr("imulq");
    } else if (op == GEN_DIV_I || op == GEN_MOD_I) {
        printInstr("divq");
        reg2 = 4;
    } else {
        assert(0);
    }
    printUInt(val);
    printComma();
    printReg(reg1);
    printComma();
    printReg(reg2);
    printNl();

    if (op == GEN_DIV_I || op == GEN_MOD_I) {
        printInstr("movq");
        printReg(op == GEN_DIV_I ? 4 : 5);
        printComma();
        printReg(reg2_);
        printNl();
    }
}

// IO hack

void
genOutHack(GenReg src)
{
    printInstr("subq");
    printUInt(8 * (3 + 1));
    printComma();
    printReg(SP);
    printComma();
    printReg(SP);
    printNl();

    // store first function parameter
    genStoreDispl(src, 24, SP);

    // call function
    genLoadLabel("print_uint64", FUNC_ADDR);
    printInstr("call");
    printReg(FUNC_ADDR);
    printComma();
    printReg(RET_ADDR);
    printNl();

    printInstr("addq");
    printUInt(8 * (3 + 1));
    printComma();
    printReg(SP);
    printComma();
    printReg(SP);
    printNl();

    // print an additional newline
    printInstr("putc");
    printUInt('\n');
    printNl();
}

void
genInHack(GenReg dest)
{
    printInstr("subq");
    printUInt(8 * (3 + 0));
    printComma();
    printReg(SP);
    printComma();
    printReg(SP);
    printNl();

    genLoadLabel("get_uint64", FUNC_ADDR);

    printInstr("call");
    printReg(FUNC_ADDR);
    printComma();
    printReg(RET_ADDR);
    printNl();

    // fetch return value
    genFetchDispl(16, SP, dest);

    printInstr("addq");
    printUInt(8 * (3 + 0));
    printComma();
    printReg(SP);
    printComma();
    printReg(SP);
    printNl();
}

Changes in the Parser

In the parser only function parse() needs to be changed:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
void
parse(void)
{
    while (token.kind != EOI) {
        if (token.kind == DOLLAR) {
            getToken();
            if (token.kind == GREATER) {
                getToken();
                // read unsigned integer
                GenReg dest = genGetReg(), val = genGetReg();
                struct TokenPos pos = token.pos;
                const struct Expr *expr = parseExpr();
                if (!isLValueExpr(expr)) {
                    errorAtPos(pos, "L-value expected");
                }
                genInHack(val);
                loadExprAddr(expr, dest);
                genStore(val, dest);
                genUngetReg(dest);
                genUngetReg(val);
            } else if (token.kind == LESS) {
                getToken();
                // print unsigned integer
                GenReg src = genGetReg();
                const struct Expr *expr = parseAssignmentExpr();
                loadExpr(expr, src);
                genOutHack(src);
                genUngetReg(src);
            } else {
                expectedError("'>' or '<'");
            }
            expected(SEMICOLON);
            getToken();
        } else {
            parseExprStatement();
        }
    }
}

Testing the Compiler

Run make xtest_abc to build the compiler:

theon$ make xtest_abc
gcc -c -Wall -Wcast-qual  -MT xtest_abc.o -MMD -MP -MF xtest_abc.c.d xtest_abc.c
gcc -o xtest_abc xtest_abc.o expr.o finalize.o gen.o lexer.o memregion.o parser.o str.o sym.o tokenkind.o ustr.o -lm
theon$ 

Now a simple program like

1
2
3
x = 21;
x = x * 2;
$< x;

can be used to print out the value of a variable. With the compiler we first generate the assembly code. Currently the compiler reads the source code from stdin so we have to redirect the source file with '<':

theon$ ./xtest_abc print_42.s < print_42.abc
theon$ 

Here the generated assembly code:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
        ldzwq 0x0, %2
        ldzwq 0x15, %6
        ldzwq @w3(x), %7
        shldwq @w2(x), %7
        shldwq @w1(x), %7
        shldwq @w0(x), %7
        movq %6, (%7)
        ldzwq @w3(x), %6
        shldwq @w2(x), %6
        shldwq @w1(x), %6
        shldwq @w0(x), %6
        movq (%6), %6
        imulq 0x2, %6, %6
        ldzwq @w3(x), %7
        shldwq @w2(x), %7
        shldwq @w1(x), %7
        shldwq @w0(x), %7
        movq %6, (%7)
        ldzwq @w3(x), %6
        shldwq @w2(x), %6
        shldwq @w1(x), %6
        shldwq @w0(x), %6
        movq (%6), %6
        subq 0x20, %2, %2
        movq %6, 24(%2)
        ldzwq @w3(print_uint64), %4
        shldwq @w2(print_uint64), %4
        shldwq @w1(print_uint64), %4
        shldwq @w0(print_uint64), %4
        call %4, %3
        addq 0x20, %2, %2
        putc 0xa
        halt %0
        .data 
        .bss 
        .align 0x8
x:
        .quad 0x0

Next we can use the ULM assembler to generate an executable. In addition to the generated assembly code print_42.s we also pass the source files getuint64.s and printuint64.s:

theon$ ../ulm-generator/1_ulm_build/stack/ulmas print_42.s getuint64.s printuint64.s
theon$ 

This produced a.out

#TEXT 8
0x0000000000000000: 08 00 00 02 #     ldzwq 0, %2
0x0000000000000004: 08 00 15 06 #     ldzwq 21, %6
0x0000000000000008: 08 00 00 07 #     ldzwq @w3(x), %7
0x000000000000000C: 15 00 00 07 #     shldwq @w2(x), %7
0x0000000000000010: 15 00 00 07 #     shldwq @w1(x), %7
0x0000000000000014: 15 01 38 07 #     shldwq @w0(x), %7
0x0000000000000018: 19 06 00 07 #     movq %6, (%7)
0x000000000000001C: 08 00 00 06 #     ldzwq @w3(x), %6
0x0000000000000020: 15 00 00 06 #     shldwq @w2(x), %6
0x0000000000000024: 15 00 00 06 #     shldwq @w1(x), %6
0x0000000000000028: 15 01 38 06 #     shldwq @w0(x), %6
0x000000000000002C: 12 06 00 06 #     movq (%6), %6
0x0000000000000030: 0F 02 06 06 #     imulq 2, %6, %6
0x0000000000000034: 08 00 00 07 #     ldzwq @w3(x), %7
0x0000000000000038: 15 00 00 07 #     shldwq @w2(x), %7
0x000000000000003C: 15 00 00 07 #     shldwq @w1(x), %7
0x0000000000000040: 15 01 38 07 #     shldwq @w0(x), %7
0x0000000000000044: 19 06 00 07 #     movq %6, (%7)
0x0000000000000048: 08 00 00 06 #     ldzwq @w3(x), %6
0x000000000000004C: 15 00 00 06 #     shldwq @w2(x), %6
0x0000000000000050: 15 00 00 06 #     shldwq @w1(x), %6
0x0000000000000054: 15 01 38 06 #     shldwq @w0(x), %6
0x0000000000000058: 12 06 00 06 #     movq (%6), %6
0x000000000000005C: 05 20 02 02 #     subq 32, %2, %2
0x0000000000000060: 19 06 18 02 #     movq %6, 24(%2)
0x0000000000000064: 08 00 00 04 #     ldzwq @w3(print_uint64), %4
0x0000000000000068: 15 00 00 04 #     shldwq @w2(print_uint64), %4
0x000000000000006C: 15 00 00 04 #     shldwq @w1(print_uint64), %4
0x0000000000000070: 15 00 D0 04 #     shldwq @w0(print_uint64), %4
0x0000000000000074: 14 04 03 00 #     call %4, %3
0x0000000000000078: 0A 20 02 02 #     addq 32, %2, %2
0x000000000000007C: 13 0A 00 00 #     putc 10
0x0000000000000080: 01 00 00 00 #     halt %0
0x0000000000000084: 19 03 00 02 #     movq %RET_ADDR, ret(%SP)
0x0000000000000088: 19 01 08 02 #     movq %FP, fp(%SP)
0x000000000000008C: 0A 00 02 01 #     addq 0, %SP, %FP
0x0000000000000090: 05 10 02 02 #     subq 8*2, %SP, %SP
0x0000000000000094: 0E 00 00 06 #     movq %0, %dest
0x0000000000000098: 02 07 00 00 #     getc %ch
0x000000000000009C: 05 30 07 00 #     subq 48, %ch, %0
0x00000000000000A0: 0D 00 00 07 #     jb .get_uint64.ret
0x00000000000000A4: 05 39 07 00 #     subq 57, %ch, %0
0x00000000000000A8: 0C 00 00 05 #     ja .get_uint64.ret
0x00000000000000AC: 05 30 07 07 #     subq 48, %ch, %ch
0x00000000000000B0: 0F 0A 06 06 #     imulq 10, %dest, %dest
0x00000000000000B4: 0E 07 06 06 #     addq %ch, %dest, %dest
0x00000000000000B8: 04 FF FF F8 #     jmp .get_uint64.read
0x00000000000000BC: 19 06 10 01 #     movq %dest, rval(%FP)
0x00000000000000C0: 0E 01 00 02 #     movq %FP, %SP
0x00000000000000C4: 12 02 08 01 #     movq fp(%SP), %FP
0x00000000000000C8: 12 02 00 03 #     movq ret(%SP), %RET_ADDR
0x00000000000000CC: 14 03 00 00 #     jmp %RET_ADDR, %0
0x00000000000000D0: 19 03 00 02 #     movq %RET_ADDR, ret(%SP)
0x00000000000000D4: 19 01 08 02 #     movq %FP, fp(%SP)
0x00000000000000D8: 0A 00 02 01 #     addq 0, %SP, %FP
0x00000000000000DC: 05 10 02 02 #     subq 8*2, %SP, %SP
0x00000000000000E0: 16 00 14 06 #     ldpa .print_uint64.pool, %buf
0x00000000000000E4: 17 06 00 06 #     ldfp (%buf), %buf
0x00000000000000E8: 0E 06 00 09 #     movq %buf, %p
0x00000000000000EC: 12 01 18 07 #     movq fparam0(%FP), %val
0x00000000000000F0: 10 0A 07 07 #     divq 10, %val, %val
0x00000000000000F4: 0A 30 08 08 #     addq 48, %digit, %digit
0x00000000000000F8: 11 08 00 09 #     movb %digit, (%p)
0x00000000000000FC: 0A 01 09 09 #     addq 1, %p, %p
0x0000000000000100: 05 00 07 00 #     subq 0, %val, %0
0x0000000000000104: 06 FF FF FB #     jnz .print_uint64.get_digit
0x0000000000000108: 05 01 09 09 #     subq 1, %p, %p
0x000000000000010C: 09 09 00 08 #     movzbq (%p), %digit
0x0000000000000110: 03 08 00 00 #     putc %digit
0x0000000000000114: 18 06 09 00 #     subq %buf, %p, %0
0x0000000000000118: 06 FF FF FC #     jnz .print_uint64.print_digit
0x000000000000011C: 0E 01 00 02 #     movq %FP, %SP
0x0000000000000120: 12 02 08 01 #     movq fp(%SP), %FP
0x0000000000000124: 12 02 00 03 #     movq ret(%SP), %RET_ADDR
0x0000000000000128: 14 03 00 00 #     jmp %RET_ADDR, %0
0x000000000000012C: 00 00 00 00 #      for alignment
0x0000000000000130: 00 00 00 00
0x0000000000000134: 00 00 00 08 #     .quad .print_uint64.buf
#DATA 1
#BSS 8 28
#SYMTAB
b x                    0x0000000000000000
t print_uint64         0x00000000000000D0
a FP                   0x0000000000000001
a SP                   0x0000000000000002
a RET_ADDR             0x0000000000000003
a ret                  0x0000000000000000
a fp                   0x0000000000000008
a rval                 0x0000000000000010
a fparam0              0x0000000000000018
t get_uint64           0x0000000000000084
a dest                 0x0000000000000006
a ch                   0x0000000000000007
t .get_uint64.read     0x0000000000000098
t .get_uint64.ret      0x00000000000000BC
b .print_uint64.buf    0x0000000000000008
a buf                  0x0000000000000006
a val                  0x0000000000000007
a digit                0x0000000000000008
a p                    0x0000000000000009
t .print_uint64.pool   0x0000000000000130
t .print_uint64.get_digit 0x00000000000000F0
t .print_uint64.print_digit 0x0000000000000108
#FIXUPS
text 0x0000000000000130  0 64 absolute [bss]+8
text 0x0000000000000070  8 16 absolute @w0([text]+208)
text 0x000000000000006C  8 16 absolute @w1([text]+208)
text 0x0000000000000068  8 16 absolute @w2([text]+208)
text 0x0000000000000064  8 16 absolute @w3([text]+208)
text 0x0000000000000054  8 16 absolute @w0([bss]+312)
text 0x0000000000000050  8 16 absolute @w1([bss]+312)
text 0x000000000000004C  8 16 absolute @w2([bss]+312)
text 0x0000000000000048  8 16 absolute @w3([bss]+312)
text 0x0000000000000040  8 16 absolute @w0([bss]+312)
text 0x000000000000003C  8 16 absolute @w1([bss]+312)
text 0x0000000000000038  8 16 absolute @w2([bss]+312)
text 0x0000000000000034  8 16 absolute @w3([bss]+312)
text 0x0000000000000028  8 16 absolute @w0([bss]+312)
text 0x0000000000000024  8 16 absolute @w1([bss]+312)
text 0x0000000000000020  8 16 absolute @w2([bss]+312)
text 0x000000000000001C  8 16 absolute @w3([bss]+312)
text 0x0000000000000014  8 16 absolute @w0([bss]+312)
text 0x0000000000000010  8 16 absolute @w1([bss]+312)
text 0x000000000000000C  8 16 absolute @w2([bss]+312)
text 0x0000000000000008  8 16 absolute @w3([bss]+312)

Which now can be executed:

theon$ ../ulm-generator/1_ulm_build/stack/ulm a.out
42
theon$ 

If you find it inconvenient to specify the path to ULM for executing the program you can turn it into an executable shell script. The first line of an executable shell script contains after the Shebang the path to a program which receives the rest of the file as argument. So in the case above the first line should be

1
#! ../ulm-generator/1_ulm_build/stack/ulm

With the two Unix commands

theon$ (echo '#! ../ulm-generator/1_ulm_build/stack/ulm'; cat a.out) > print_42
theon$ chmod +x print_42
theon$ 

a new file print_42 was created with the Shebang for the ULM in the first line followed by the content of a.out.

#! ../ulm-generator/1_ulm_build/stack/ulm
#TEXT 8
0x0000000000000000: 08 00 00 02 #     ldzwq 0, %2
0x0000000000000004: 08 00 15 06 #     ldzwq 21, %6
0x0000000000000008: 08 00 00 07 #     ldzwq @w3(x), %7
0x000000000000000C: 15 00 00 07 #     shldwq @w2(x), %7
0x0000000000000010: 15 00 00 07 #     shldwq @w1(x), %7
0x0000000000000014: 15 01 38 07 #     shldwq @w0(x), %7
0x0000000000000018: 19 06 00 07 #     movq %6, (%7)
0x000000000000001C: 08 00 00 06 #     ldzwq @w3(x), %6
0x0000000000000020: 15 00 00 06 #     shldwq @w2(x), %6
0x0000000000000024: 15 00 00 06 #     shldwq @w1(x), %6
0x0000000000000028: 15 01 38 06 #     shldwq @w0(x), %6
0x000000000000002C: 12 06 00 06 #     movq (%6), %6
0x0000000000000030: 0F 02 06 06 #     imulq 2, %6, %6
0x0000000000000034: 08 00 00 07 #     ldzwq @w3(x), %7
0x0000000000000038: 15 00 00 07 #     shldwq @w2(x), %7
0x000000000000003C: 15 00 00 07 #     shldwq @w1(x), %7
0x0000000000000040: 15 01 38 07 #     shldwq @w0(x), %7
0x0000000000000044: 19 06 00 07 #     movq %6, (%7)
0x0000000000000048: 08 00 00 06 #     ldzwq @w3(x), %6
0x000000000000004C: 15 00 00 06 #     shldwq @w2(x), %6
0x0000000000000050: 15 00 00 06 #     shldwq @w1(x), %6
0x0000000000000054: 15 01 38 06 #     shldwq @w0(x), %6
0x0000000000000058: 12 06 00 06 #     movq (%6), %6
0x000000000000005C: 05 20 02 02 #     subq 32, %2, %2
0x0000000000000060: 19 06 18 02 #     movq %6, 24(%2)
0x0000000000000064: 08 00 00 04 #     ldzwq @w3(print_uint64), %4
0x0000000000000068: 15 00 00 04 #     shldwq @w2(print_uint64), %4
0x000000000000006C: 15 00 00 04 #     shldwq @w1(print_uint64), %4
0x0000000000000070: 15 00 D0 04 #     shldwq @w0(print_uint64), %4
0x0000000000000074: 14 04 03 00 #     call %4, %3
0x0000000000000078: 0A 20 02 02 #     addq 32, %2, %2
0x000000000000007C: 13 0A 00 00 #     putc 10
0x0000000000000080: 01 00 00 00 #     halt %0
0x0000000000000084: 19 03 00 02 #     movq %RET_ADDR, ret(%SP)
0x0000000000000088: 19 01 08 02 #     movq %FP, fp(%SP)
0x000000000000008C: 0A 00 02 01 #     addq 0, %SP, %FP
0x0000000000000090: 05 10 02 02 #     subq 8*2, %SP, %SP
0x0000000000000094: 0E 00 00 06 #     movq %0, %dest
0x0000000000000098: 02 07 00 00 #     getc %ch
0x000000000000009C: 05 30 07 00 #     subq 48, %ch, %0
0x00000000000000A0: 0D 00 00 07 #     jb .get_uint64.ret
0x00000000000000A4: 05 39 07 00 #     subq 57, %ch, %0
0x00000000000000A8: 0C 00 00 05 #     ja .get_uint64.ret
0x00000000000000AC: 05 30 07 07 #     subq 48, %ch, %ch
0x00000000000000B0: 0F 0A 06 06 #     imulq 10, %dest, %dest
0x00000000000000B4: 0E 07 06 06 #     addq %ch, %dest, %dest
0x00000000000000B8: 04 FF FF F8 #     jmp .get_uint64.read
0x00000000000000BC: 19 06 10 01 #     movq %dest, rval(%FP)
0x00000000000000C0: 0E 01 00 02 #     movq %FP, %SP
0x00000000000000C4: 12 02 08 01 #     movq fp(%SP), %FP
0x00000000000000C8: 12 02 00 03 #     movq ret(%SP), %RET_ADDR
0x00000000000000CC: 14 03 00 00 #     jmp %RET_ADDR, %0
0x00000000000000D0: 19 03 00 02 #     movq %RET_ADDR, ret(%SP)
0x00000000000000D4: 19 01 08 02 #     movq %FP, fp(%SP)
0x00000000000000D8: 0A 00 02 01 #     addq 0, %SP, %FP
0x00000000000000DC: 05 10 02 02 #     subq 8*2, %SP, %SP
0x00000000000000E0: 16 00 14 06 #     ldpa .print_uint64.pool, %buf
0x00000000000000E4: 17 06 00 06 #     ldfp (%buf), %buf
0x00000000000000E8: 0E 06 00 09 #     movq %buf, %p
0x00000000000000EC: 12 01 18 07 #     movq fparam0(%FP), %val
0x00000000000000F0: 10 0A 07 07 #     divq 10, %val, %val
0x00000000000000F4: 0A 30 08 08 #     addq 48, %digit, %digit
0x00000000000000F8: 11 08 00 09 #     movb %digit, (%p)
0x00000000000000FC: 0A 01 09 09 #     addq 1, %p, %p
0x0000000000000100: 05 00 07 00 #     subq 0, %val, %0
0x0000000000000104: 06 FF FF FB #     jnz .print_uint64.get_digit
0x0000000000000108: 05 01 09 09 #     subq 1, %p, %p
0x000000000000010C: 09 09 00 08 #     movzbq (%p), %digit
0x0000000000000110: 03 08 00 00 #     putc %digit
0x0000000000000114: 18 06 09 00 #     subq %buf, %p, %0
0x0000000000000118: 06 FF FF FC #     jnz .print_uint64.print_digit
0x000000000000011C: 0E 01 00 02 #     movq %FP, %SP
0x0000000000000120: 12 02 08 01 #     movq fp(%SP), %FP
0x0000000000000124: 12 02 00 03 #     movq ret(%SP), %RET_ADDR
0x0000000000000128: 14 03 00 00 #     jmp %RET_ADDR, %0
0x000000000000012C: 00 00 00 00 #      for alignment
0x0000000000000130: 00 00 00 00
0x0000000000000134: 00 00 00 08 #     .quad .print_uint64.buf
#DATA 1
#BSS 8 28
#SYMTAB
b x                    0x0000000000000000
t print_uint64         0x00000000000000D0
a FP                   0x0000000000000001
a SP                   0x0000000000000002
a RET_ADDR             0x0000000000000003
a ret                  0x0000000000000000
a fp                   0x0000000000000008
a rval                 0x0000000000000010
a fparam0              0x0000000000000018
t get_uint64           0x0000000000000084
a dest                 0x0000000000000006
a ch                   0x0000000000000007
t .get_uint64.read     0x0000000000000098
t .get_uint64.ret      0x00000000000000BC
b .print_uint64.buf    0x0000000000000008
a buf                  0x0000000000000006
a val                  0x0000000000000007
a digit                0x0000000000000008
a p                    0x0000000000000009
t .print_uint64.pool   0x0000000000000130
t .print_uint64.get_digit 0x00000000000000F0
t .print_uint64.print_digit 0x0000000000000108
#FIXUPS
text 0x0000000000000130  0 64 absolute [bss]+8
text 0x0000000000000070  8 16 absolute @w0([text]+208)
text 0x000000000000006C  8 16 absolute @w1([text]+208)
text 0x0000000000000068  8 16 absolute @w2([text]+208)
text 0x0000000000000064  8 16 absolute @w3([text]+208)
text 0x0000000000000054  8 16 absolute @w0([bss]+312)
text 0x0000000000000050  8 16 absolute @w1([bss]+312)
text 0x000000000000004C  8 16 absolute @w2([bss]+312)
text 0x0000000000000048  8 16 absolute @w3([bss]+312)
text 0x0000000000000040  8 16 absolute @w0([bss]+312)
text 0x000000000000003C  8 16 absolute @w1([bss]+312)
text 0x0000000000000038  8 16 absolute @w2([bss]+312)
text 0x0000000000000034  8 16 absolute @w3([bss]+312)
text 0x0000000000000028  8 16 absolute @w0([bss]+312)
text 0x0000000000000024  8 16 absolute @w1([bss]+312)
text 0x0000000000000020  8 16 absolute @w2([bss]+312)
text 0x000000000000001C  8 16 absolute @w3([bss]+312)
text 0x0000000000000014  8 16 absolute @w0([bss]+312)
text 0x0000000000000010  8 16 absolute @w1([bss]+312)
text 0x000000000000000C  8 16 absolute @w2([bss]+312)
text 0x0000000000000008  8 16 absolute @w3([bss]+312)

With chmod this file was made executable:

theon$ ./print_42
42
theon$ 

Of course the creation of an executable can be automatized with a makefile.

Example Directory and Makefile

Create a subdirectory and save there following files (make sure the makefile has poper tabs):

ABC := ../xtest_abc

ulm.path := $(patsubst %/,%,$(shell cat "path-to-ulm"))

AS  := $(ulm.path)/ulmas
ULM := $(ulm.path)/ulm

io.hack.s := getuint64.s printuint64.s

example.src := $(wildcard *.abc)
example.s   := $(patsubst %.abc,%.s,$(example.src))
example     := $(patsubst %.abc,%,$(example.src))

all: $(example)

%.s : %.abc
        $(ABC) $@ < $^

% : %.s
        $(AS) $^ $(io.hack.s)
        (echo "#! $(ULM)"; cat a.out) > $@
        $(RM) a.out
        chmod +x $@

clean:
        $(RM) $(example)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    .equ    FP,         1
    .equ    SP,         2
    .equ    RET_ADDR,   3

    .equ    ret,        0
    .equ    fp,         ret + 8
    .equ    rval,       fp + 8
    .equ    fparam0,    rval + 8


//  function:   %RET_VAL get_uint64()
    .text
get_uint64:
    // prologue
    movq    %RET_ADDR,  ret(%SP)
    movq    %FP,        fp(%SP)
    addq    0,          %SP,        %FP
    subq    8 * 2,      %SP,        %SP

    .equ    dest,   6
    .equ    ch,     dest + 1

    movq    %0,     %dest

.get_uint64.read:
    getc    %ch
#   if %ch < '0' then we are done
    subq    '0',    %ch,    %0
    jb      .get_uint64.ret
#   if %ch > '9' then we are done
    subq    '9',    %ch,    %0
    ja      .get_uint64.ret

    subq    '0',    %ch,    %ch
    imulq   10,     %dest,  %dest
    addq    %ch,    %dest,  %dest
    jmp     .get_uint64.read

.get_uint64.ret:
    movq    %dest,  rval(%FP)

    // epilogue
    movq        %FP,            %SP
    movq        fp(%SP),        %FP
    movq        ret(%SP),       %RET_ADDR
    jmp         %RET_ADDR,      %0
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    .equ    FP,         1
    .equ    SP,         2
    .equ    RET_ADDR,   3

    .equ    ret,        0
    .equ    fp,         ret + 8
    .equ    rval,       fp + 8
    .equ    fparam0,    rval + 8


// function:    void    print_uint64(val)
// static char[20] buf;
    .bss
.print_uint64.buf:
    .space  20

    .text
print_uint64:
    // prologue
    movq    %RET_ADDR,  ret(%SP)
    movq    %FP,        fp(%SP)
    addq    0,          %SP,        %FP
    subq    8 * 2,      %SP,        %SP

    .equ    buf,        6
    .equ    val,        buf + 1
    .equ    digit,      val + 1
    .equ    p,          digit + 1

    ldpa    .print_uint64.pool,     %buf
    ldfp    (%buf),                 %buf
    movq    %buf,                   %p

    movq    fparam0(%FP),           %val

.print_uint64.get_digit:
    divq    10,     %val,   %val
    addq    '0',    %digit, %digit
    movb    %digit, (%p)
    addq    1,      %p,     %p
    subq    0,      %val,   %0
    jnz     .print_uint64.get_digit

.print_uint64.print_digit:
    subq    1,      %p,     %p
    movzbq  (%p),   %digit
    putc    %digit
    subq    %buf,      %p,     %0
    jnz     .print_uint64.print_digit

    // epilogue
    movq        %FP,            %SP
    movq        fp(%SP),        %FP
    movq        ret(%SP),       %RET_ADDR
    jmp         %RET_ADDR,      %0

    .align 8
.print_uint64.pool:
    .quad   .print_uint64.buf
$> x;
$< x * x;
x = x + 42;
$< x;
$< y;

Create an addition file “path-to-ulm” that contains the path to your ULM assembler and the virtual machine. For example

1
$HOME/tmp/ulm-generator/1_ulm_build/stack/

or

1
../../ulm-generator/1_ulm_build/stack/

Then with make all files with the extension '.abc' will be translated into executables:

theon$ make
../xtest_abc fold_example.s < fold_example.abc
../../ulm-generator/1_ulm_build/stack/ulmas fold_example.s getuint64.s printuint64.s
(echo "#! ../../ulm-generator/1_ulm_build/stack/ulm"; cat a.out) > fold_example
rm -f a.out
chmod +x fold_example
../xtest_abc test.s < test.abc
../../ulm-generator/1_ulm_build/stack/ulmas test.s getuint64.s printuint64.s
(echo "#! ../../ulm-generator/1_ulm_build/stack/ulm"; cat a.out) > test
rm -f a.out
chmod +x test
rm fold_example.s test.s
theon$ echo 4 | ./test
16
46
0
theon$