1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
     292
     293
     294
     295
     296
     297
     298
     299
     300
     301
     302
     303
     304
     305
     306
     307
     308
     309
     310
     311
     312
     313
     314
     315
     316
     317
     318
     319
     320
     321
     322
     323
     324
     325
     326
     327
     328
     329
     330
     331
     332
     333
     334
     335
     336
     337
     338
     339
     340
     341
     342
     343
     344
     345
     346
     347
     348
     349
     350
     351
     352
     353
     354
     355
     356
     357
     358
     359
     360
     361
     362
     363
     364
     365
     366
     367
     368
     369
     370
     371
     372
     373
     374
     375
     376
     377
     378
     379
     380
     381
     382
     383
     384
     385
     386
     387
     388
     389
     390
     391
     392
     393
     394
     395
     396
     397
     398
     399
     400
     401
     402
     403
     404
     405
     406
     407
     408
     409
     410
     411
     412
     413
     414
     415
     416
     417
     418
     419
     420
     421
     422
     423
     424
     425
     426
     427
     428
     429
     430
     431
     432
     433
     434
     435
     436
     437
     438
     439
     440
     441
     442
     443
     444
     445
     446
     447
     448
     449
     450
     451
     452
     453
     454
     455
     456
     457
     458
     459
     460
     461
     462
     463
     464
     465
     466
     467
     468
     469
     470
     471
     472
     473
     474
     475
     476
     477
     478
     479
     480
     481
     482
     483
     484
     485
     486
     487
     488
     489
     490
     491
     492
     493
     494
     495
     496
     497
     498
     499
     500
     501
     502
     503
     504
     505
     506
     507
     508
     509
     510
     511
     512
     513
     514
     515
     516
     517
     518
     519
     520
     521
     522
     523
     524
     525
     526
     527
     528
     529
     530
     531
     532
     533
     534
     535
     536
     537
     538
     539
     540
     541
     542
     543
     544
     545
     546
     547
     548
     549
     550
     551
     552
     553
     554
     555
     556
     557
     558
     559
     560
     561
     562
     563
     564
     565
     566
     567
     568
     569
     570
     571
     572
     573
     574
     575
     576
     577
     578
     579
     580
     581
     582
     583
     584
     585
     586
     587
     588
     589
     590
     591
     592
     593
     594
     595
     596
     597
     598
     599
     600
     601
     602
     603
     604
     605
     606
     607
     608
     609
     610
     611
     612
     613
     614
     615
     616
     617
     618
     619
     620
     621
     622
     623
     624
     625
     626
     627
     628
     629
     630
     631
     632
     633
     634
     635
     636
     637
     638
     639
     640
     641
     642
     643
     644
     645
     646
     647
     648
     649
     650
     651
     652
     653
     654
     655
     656
     657
     658
     659
     660
     661
     662
     663
     664
     665
     666
     667
     668
     669
     670
     671
     672
     673
     674
     675
     676
     677
     678
     679
     680
     681
     682
     683
     684
     685
     686
     687
     688
     689
     690
     691
     692
     693
     694
     695
     696
     697
     698
     699
     700
     701
     702
     703
     704
     705
     706
     707
     708
     709
     710
     711
     712
     713
     714
     715
     716
     717
     718
     719
     720
     721
     722
     723
     724
     725
     726
     727
     728
     729
     730
     731
     732
     733
     734
     735
     736
     737
     738
     739
     740
     741
     742
     743
     744
     745
     746
     747
     748
     749
     750
     751
     752
     753
     754
     755
     756
     757
     758
     759
     760
     761
     762
     763
     764
     765
     766
     767
     768
     769
     770
     771
     772
     773
     774
     775
     776
     777
     778
     779
     780
     781
     782
     783
     784
     785
     786
     787
     788
     789
     790
     791
     792
     793
     794
     795
     796
     797
     798
     799
     800
     801
     802
     803
     804
     805
     806
     807
     808
     809
     810
     811
     812
     813
     814
     815
     816
     817
     818
     819
     820
     821
     822
     823
     824
     825
     826
     827
     828
     829
     830
     831
     832
     833
     834
     835
     836
     837
     838
     839
     840
     841
     842
     843
     844
     845
     846
     847
     848
     849
     850
     851
     852
      DOUBLE PRECISION FUNCTION DLAMCHCMACH )
*
*  -- LAPACK auxiliary routine (version 3.3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2010
*
*     .. Scalar Arguments ..
      CHARACTER          CMACH
*     ..
*
*  Purpose
*  =======
*
*  DLAMCH determines double precision machine parameters.
*
*  Arguments
*  =========
*
*  CMACH   (input) CHARACTER*1
*          Specifies the value to be returned by DLAMCH:
*          = 'E' or 'e',   DLAMCH := eps
*          = 'S' or 's ,   DLAMCH := sfmin
*          = 'B' or 'b',   DLAMCH := base
*          = 'P' or 'p',   DLAMCH := eps*base
*          = 'N' or 'n',   DLAMCH := t
*          = 'R' or 'r',   DLAMCH := rnd
*          = 'M' or 'm',   DLAMCH := emin
*          = 'U' or 'u',   DLAMCH := rmin
*          = 'L' or 'l',   DLAMCH := emax
*          = 'O' or 'o',   DLAMCH := rmax
*
*          where
*
*          eps   = relative machine precision
*          sfmin = safe minimum, such that 1/sfmin does not overflow
*          base  = base of the machine
*          prec  = eps*base
*          t     = number of (base) digits in the mantissa
*          rnd   = 1.0 when rounding occurs in addition, 0.0 otherwise
*          emin  = minimum exponent before (gradual) underflow
*          rmin  = underflow threshold - base**(emin-1)
*          emax  = largest exponent before overflow
*          rmax  = overflow threshold  - (base**emax)*(1-eps)
*
* =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONEZERO
      PARAMETER          ( ONE = 1.0D+0ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            FIRSTLRND
      INTEGER            BETAIMAXIMINIT
      DOUBLE PRECISION   BASEEMAXEMINEPSPRECRMACHRMAXRMIN,
     $                   RNDSFMINSMALLT
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLAMC2
*     ..
*     .. Save statement ..
      SAVE               FIRSTEPSSFMINBASETRNDEMINRMIN,
     $                   EMAXRMAXPREC
*     ..
*     .. Data statements ..
      DATA               FIRST / .TRUE. /
*     ..
*     .. Executable Statements ..
*
      IFFIRST ) THEN
         CALL DLAMC2BETAITLRNDEPSIMINRMINIMAXRMAX )
         BASE = BETA
         T = IT
         IFLRND ) THEN
            RND = ONE
            EPS = ( BASE**( 1-IT ) ) / 2
         ELSE
            RND = ZERO
            EPS = BASE**( 1-IT )
         END IF
         PREC = EPS*BASE
         EMIN = IMIN
         EMAX = IMAX
         SFMIN = RMIN
         SMALL = ONE / RMAX
         IFSMALL.GE.SFMIN ) THEN
*
*           Use SMALL plus a bit, to avoid the possibility of rounding
*           causing overflow when computing  1/sfmin.
*
            SFMIN = SMALL*ONE+EPS )
         END IF
      END IF
*
      IFLSAMECMACH'E' ) ) THEN
         RMACH = EPS
      ELSE IFLSAMECMACH'S' ) ) THEN
         RMACH = SFMIN
      ELSE IFLSAMECMACH'B' ) ) THEN
         RMACH = BASE
      ELSE IFLSAMECMACH'P' ) ) THEN
         RMACH = PREC
      ELSE IFLSAMECMACH'N' ) ) THEN
         RMACH = T
      ELSE IFLSAMECMACH'R' ) ) THEN
         RMACH = RND
      ELSE IFLSAMECMACH'M' ) ) THEN
         RMACH = EMIN
      ELSE IFLSAMECMACH'U' ) ) THEN
         RMACH = RMIN
      ELSE IFLSAMECMACH'L' ) ) THEN
         RMACH = EMAX
      ELSE IFLSAMECMACH'O' ) ) THEN
         RMACH = RMAX
      END IF
*
      DLAMCH = RMACH
      FIRST  = .FALSE.
      RETURN
*
*     End of DLAMCH
*
      END
*
************************************************************************
*
      SUBROUTINE DLAMC1BETATRNDIEEE1 )
*
*  -- LAPACK auxiliary routine (version 3.3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2010
*
*     .. Scalar Arguments ..
      LOGICAL            IEEE1RND
      INTEGER            BETAT
*     ..
*
*  Purpose
*  =======
*
*  DLAMC1 determines the machine parameters given by BETA, T, RND, and
*  IEEE1.
*
*  Arguments
*  =========
*
*  BETA    (output) INTEGER
*          The base of the machine.
*
*  T       (output) INTEGER
*          The number of ( BETA ) digits in the mantissa.
*
*  RND     (output) LOGICAL
*          Specifies whether proper rounding  ( RND = .TRUE. )  or
*          chopping  ( RND = .FALSE. )  occurs in addition. This may not
*          be a reliable guide to the way in which the machine performs
*          its arithmetic.
*
*  IEEE1   (output) LOGICAL
*          Specifies whether rounding appears to be done in the IEEE
*          'round to nearest' style.
*
*  Further Details
*  ===============
*
*  The routine is based on the routine  ENVRON  by Malcolm and
*  incorporates suggestions by Gentleman and Marovich. See
*
*     Malcolm M. A. (1972) Algorithms to reveal properties of
*        floating-point arithmetic. Comms. of the ACM, 15, 949-951.
*
*     Gentleman W. M. and Marovich S. B. (1974) More on algorithms
*        that reveal properties of floating point arithmetic units.
*        Comms. of the ACM, 17, 276-277.
*
* =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            FIRSTLIEEE1LRND
      INTEGER            LBETALT
      DOUBLE PRECISION   ABCFONEQTRSAVECT1T2
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMC3
      EXTERNAL           DLAMC3
*     ..
*     .. Save statement ..
      SAVE               FIRSTLIEEE1LBETALRNDLT
*     ..
*     .. Data statements ..
      DATA               FIRST / .TRUE. /
*     ..
*     .. Executable Statements ..
*
      IFFIRST ) THEN
         ONE = 1
*
*        LBETA,  LIEEE1,  LT and  LRND  are the  local values  of  BETA,
*        IEEE1, T and RND.
*
*        Throughout this routine  we use the function  DLAMC3  to ensure
*        that relevant values are  stored and not held in registers,  or
*        are not affected by optimizers.
*
*        Compute  a = 2.0**m  with the  smallest positive integer m such
*        that
*
*           fl( a + 1.0 ) = a.
*
         A = 1
         C = 1
*
*+       WHILE( C.EQ.ONE )LOOP
   10    CONTINUE
         IFC.EQ.ONE ) THEN
            A = 2*A
            C = DLAMC3AONE )
            C = DLAMC3C-A )
            GO TO 10
         END IF
*+       END WHILE
*
*        Now compute  b = 2.0**m  with the smallest positive integer m
*        such that
*
*           fl( a + b ) .gt. a.
*
         B = 1
         C = DLAMC3AB )
*
*+       WHILE( C.EQ.A )LOOP
   20    CONTINUE
         IFC.EQ.A ) THEN
            B = 2*B
            C = DLAMC3AB )
            GO TO 20
         END IF
*+       END WHILE
*
*        Now compute the base.  a and c  are neighbouring floating point
*        numbers  in the  interval  ( beta**t, beta**( t + 1 ) )  and so
*        their difference is beta. Adding 0.25 to c is to ensure that it
*        is truncated to beta and not ( beta - 1 ).
*
         QTR = ONE / 4
         SAVEC = C
         C = DLAMC3C-A )
         LBETA = C + QTR
*
*        Now determine whether rounding or chopping occurs,  by adding a
*        bit  less  than  beta/2  and a  bit  more  than  beta/2  to  a.
*
         B = LBETA
         F = DLAMC3B / 2-B / 100 )
         C = DLAMC3FA )
         IFC.EQ.A ) THEN
            LRND = .TRUE.
         ELSE
            LRND = .FALSE.
         END IF
         F = DLAMC3B / 2B / 100 )
         C = DLAMC3FA )
         IF( ( LRND ) .AND. ( C.EQ.A ) )
     $      LRND = .FALSE.
*
*        Try and decide whether rounding is done in the  IEEE  'round to
*        nearest' style. B/2 is half a unit in the last place of the two
*        numbers A and SAVEC. Furthermore, A is even, i.e. has last  bit
*        zero, and SAVEC is odd. Thus adding B/2 to A should not  change
*        A, but adding B/2 to SAVEC should change SAVEC.
*
         T1 = DLAMC3B / 2A )
         T2 = DLAMC3B / 2SAVEC )
         LIEEE1 = ( T1.EQ.A ) .AND. ( T2.GT.SAVEC ) .AND. LRND
*
*        Now find  the  mantissa, t.  It should  be the  integer part of
*        log to the base beta of a,  however it is safer to determine  t
*        by powering.  So we find t as the smallest positive integer for
*        which
*
*           fl( beta**t + 1.0 ) = 1.0.
*
         LT = 0
         A = 1
         C = 1
*
*+       WHILE( C.EQ.ONE )LOOP
   30    CONTINUE
         IFC.EQ.ONE ) THEN
            LT = LT + 1
            A = A*LBETA
            C = DLAMC3AONE )
            C = DLAMC3C-A )
            GO TO 30
         END IF
*+       END WHILE
*
      END IF
*
      BETA = LBETA
      T = LT
      RND = LRND
      IEEE1 = LIEEE1
      FIRST = .FALSE.
      RETURN
*
*     End of DLAMC1
*
      END
*
************************************************************************
*
      SUBROUTINE DLAMC2BETATRNDEPSEMINRMINEMAXRMAX )
*
*  -- LAPACK auxiliary routine (version 3.3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2010
*
*     .. Scalar Arguments ..
      LOGICAL            RND
      INTEGER            BETAEMAXEMINT
      DOUBLE PRECISION   EPSRMAXRMIN
*     ..
*
*  Purpose
*  =======
*
*  DLAMC2 determines the machine parameters specified in its argument
*  list.
*
*  Arguments
*  =========
*
*  BETA    (output) INTEGER
*          The base of the machine.
*
*  T       (output) INTEGER
*          The number of ( BETA ) digits in the mantissa.
*
*  RND     (output) LOGICAL
*          Specifies whether proper rounding  ( RND = .TRUE. )  or
*          chopping  ( RND = .FALSE. )  occurs in addition. This may not
*          be a reliable guide to the way in which the machine performs
*          its arithmetic.
*
*  EPS     (output) DOUBLE PRECISION
*          The smallest positive number such that
*
*             fl( 1.0 - EPS ) .LT. 1.0,
*
*          where fl denotes the computed value.
*
*  EMIN    (output) INTEGER
*          The minimum exponent before (gradual) underflow occurs.
*
*  RMIN    (output) DOUBLE PRECISION
*          The smallest normalized number for the machine, given by
*          BASE**( EMIN - 1 ), where  BASE  is the floating point value
*          of BETA.
*
*  EMAX    (output) INTEGER
*          The maximum exponent before overflow occurs.
*
*  RMAX    (output) DOUBLE PRECISION
*          The largest positive number for the machine, given by
*          BASE**EMAX * ( 1 - EPS ), where  BASE  is the floating point
*          value of BETA.
*
*  Further Details
*  ===============
*
*  The computation of  EPS  is based on a routine PARANOIA by
*  W. Kahan of the University of California at Berkeley.
*
* =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            FIRSTIEEEIWARNLIEEE1LRND
      INTEGER            GNMINGPMINILBETALEMAXLEMINLT,
     $                   NGNMINNGPMIN
      DOUBLE PRECISION   ABCHALFLEPSLRMAXLRMINONERBASE,
     $                   SIXTHSMALLTHIRDTWOZERO
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMC3
      EXTERNAL           DLAMC3
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLAMC1DLAMC4DLAMC5
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSMAXMIN
*     ..
*     .. Save statement ..
      SAVE               FIRSTIWARNLBETALEMAXLEMINLEPSLRMAX,
     $                   LRMINLT
*     ..
*     .. Data statements ..
      DATA               FIRST / .TRUE. / , IWARN / .FALSE. /
*     ..
*     .. Executable Statements ..
*
      IFFIRST ) THEN
         ZERO = 0
         ONE = 1
         TWO = 2
*
*        LBETA, LT, LRND, LEPS, LEMIN and LRMIN  are the local values of
*        BETA, T, RND, EPS, EMIN and RMIN.
*
*        Throughout this routine  we use the function  DLAMC3  to ensure
*        that relevant values are stored  and not held in registers,  or
*        are not affected by optimizers.
*
*        DLAMC1 returns the parameters  LBETA, LT, LRND and LIEEE1.
*
         CALL DLAMC1LBETALTLRNDLIEEE1 )
*
*        Start to find EPS.
*
         B = LBETA
         A = B**( -LT )
         LEPS = A
*
*        Try some tricks to see whether or not this is the correct  EPS.
*
         B = TWO / 3
         HALF = ONE / 2
         SIXTH = DLAMC3B-HALF )
         THIRD = DLAMC3SIXTHSIXTH )
         B = DLAMC3THIRD-HALF )
         B = DLAMC3BSIXTH )
         B = ABSB )
         IFB.LT.LEPS )
     $      B = LEPS
*
         LEPS = 1
*
*+       WHILE( ( LEPS.GT.B ).AND.( B.GT.ZERO ) )LOOP
   10    CONTINUE
         IF( ( LEPS.GT.B ) .AND. ( B.GT.ZERO ) ) THEN
            LEPS = B
            C = DLAMC3HALF*LEPS, ( TWO**5 )*LEPS**2 ) )
            C = DLAMC3HALF-C )
            B = DLAMC3HALFC )
            C = DLAMC3HALF-B )
            B = DLAMC3HALFC )
            GO TO 10
         END IF
*+       END WHILE
*
         IFA.LT.LEPS )
     $      LEPS = A
*
*        Computation of EPS complete.
*
*        Now find  EMIN.  Let A = + or - 1, and + or - (1 + BASE**(-3)).
*        Keep dividing  A by BETA until (gradual) underflow occurs. This
*        is detected when we cannot recover the previous A.
*
         RBASE = ONE / LBETA
         SMALL = ONE
         DO 20 I = 13
            SMALL = DLAMC3SMALL*RBASEZERO )
   20    CONTINUE
         A = DLAMC3ONESMALL )
         CALL DLAMC4NGPMINONELBETA )
         CALL DLAMC4NGNMIN-ONELBETA )
         CALL DLAMC4GPMINALBETA )
         CALL DLAMC4GNMIN-ALBETA )
         IEEE = .FALSE.
*
         IF( ( NGPMIN.EQ.NGNMIN ) .AND. ( GPMIN.EQ.GNMIN ) ) THEN
            IFNGPMIN.EQ.GPMIN ) THEN
               LEMIN = NGPMIN
*            ( Non twos-complement machines, no gradual underflow;
*              e.g.,  VAX )
            ELSE IF( ( GPMIN-NGPMIN ).EQ.3 ) THEN
               LEMIN = NGPMIN - 1 + LT
               IEEE = .TRUE.
*            ( Non twos-complement machines, with gradual underflow;
*              e.g., IEEE standard followers )
            ELSE
               LEMIN = MINNGPMINGPMIN )
*            ( A guess; no known machine )
               IWARN = .TRUE.
            END IF
*
         ELSE IF( ( NGPMIN.EQ.GPMIN ) .AND. ( NGNMIN.EQ.GNMIN ) ) THEN
            IFABSNGPMIN-NGNMIN ).EQ.1 ) THEN
               LEMIN = MAXNGPMINNGNMIN )
*            ( Twos-complement machines, no gradual underflow;
*              e.g., CYBER 205 )
            ELSE
               LEMIN = MINNGPMINNGNMIN )
*            ( A guess; no known machine )
               IWARN = .TRUE.
            END IF
*
         ELSE IF( ( ABSNGPMIN-NGNMIN ).EQ.1 ) .AND.
     $            ( GPMIN.EQ.GNMIN ) ) THEN
            IF( ( GPMIN-MINNGPMINNGNMIN ) ).EQ.3 ) THEN
               LEMIN = MAXNGPMINNGNMIN ) - 1 + LT
*            ( Twos-complement machines with gradual underflow;
*              no known machine )
            ELSE
               LEMIN = MINNGPMINNGNMIN )
*            ( A guess; no known machine )
               IWARN = .TRUE.
            END IF
*
         ELSE
            LEMIN = MINNGPMINNGNMINGPMINGNMIN )
*         ( A guess; no known machine )
            IWARN = .TRUE.
         END IF
         FIRST = .FALSE.
***
* Comment out this if block if EMIN is ok
         IFIWARN ) THEN
            FIRST = .TRUE.
            WRITE6, FMT = 9999 )LEMIN
         END IF
***
*
*        Assume IEEE arithmetic if we found denormalised  numbers above,
*        or if arithmetic seems to round in the  IEEE style,  determined
*        in routine DLAMC1. A true IEEE machine should have both  things
*        true; however, faulty machines may have one or the other.
*
         IEEE = IEEE .OR. LIEEE1
*
*        Compute  RMIN by successive division by  BETA. We could compute
*        RMIN as BASE**( EMIN - 1 ),  but some machines underflow during
*        this computation.
*
         LRMIN = 1
         DO 30 I = 11 - LEMIN
            LRMIN = DLAMC3LRMIN*RBASEZERO )
   30    CONTINUE
*
*        Finally, call DLAMC5 to compute EMAX and RMAX.
*
         CALL DLAMC5LBETALTLEMINIEEELEMAXLRMAX )
      END IF
*
      BETA = LBETA
      T = LT
      RND = LRND
      EPS = LEPS
      EMIN = LEMIN
      RMIN = LRMIN
      EMAX = LEMAX
      RMAX = LRMAX
*
      RETURN
*
 9999 FORMAT( / / ' WARNING. The value EMIN may be incorrect:-',
     $      '  EMIN = ', I8, /
     $      ' If, after inspection, the value EMIN looks',
     $      ' acceptable please comment out ',
     $      / ' the IF block as marked within the code of routine',
     $      ' DLAMC2,', / ' otherwise supply EMIN explicitly.', / )
*
*     End of DLAMC2
*
      END
*
************************************************************************
*
      DOUBLE PRECISION FUNCTION DLAMC3AB )
*
*  -- LAPACK auxiliary routine (version 3.3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2010
*
*     .. Scalar Arguments ..
      DOUBLE PRECISION   AB
*     ..
*
*  Purpose
*  =======
*
*  DLAMC3  is intended to force  A  and  B  to be stored prior to doing
*  the addition of  A  and  B ,  for use in situations where optimizers
*  might hold one of these in a register.
*
*  Arguments
*  =========
*
*  A       (input) DOUBLE PRECISION
*  B       (input) DOUBLE PRECISION
*          The values A and B.
*
* =====================================================================
*
*     .. Executable Statements ..
*
      DLAMC3 = A + B
*
      RETURN
*
*     End of DLAMC3
*
      END
*
************************************************************************
*
      SUBROUTINE DLAMC4EMINSTARTBASE )
*
*  -- LAPACK auxiliary routine (version 3.3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2010
*
*     .. Scalar Arguments ..
      INTEGER            BASEEMIN
      DOUBLE PRECISION   START
*     ..
*
*  Purpose
*  =======
*
*  DLAMC4 is a service routine for DLAMC2.
*
*  Arguments
*  =========
*
*  EMIN    (output) INTEGER 
*          The minimum exponent before (gradual) underflow, computed by
*          setting A = START and dividing by BASE until the previous A
*          can not be recovered.
*
*  START   (input) DOUBLE PRECISION
*          The starting point for determining EMIN.
*
*  BASE    (input) INTEGER
*          The base of the machine.
*
* =====================================================================
*
*     .. Local Scalars ..
      INTEGER            I
      DOUBLE PRECISION   AB1B2C1C2D1D2ONERBASEZERO
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMC3
      EXTERNAL           DLAMC3
*     ..
*     .. Executable Statements ..
*
      A = START
      ONE = 1
      RBASE = ONE / BASE
      ZERO = 0
      EMIN = 1
      B1 = DLAMC3A*RBASEZERO )
      C1 = A
      C2 = A
      D1 = A
      D2 = A
*+    WHILE( ( C1.EQ.A ).AND.( C2.EQ.A ).AND.
*    $       ( D1.EQ.A ).AND.( D2.EQ.A )      )LOOP
   10 CONTINUE
      IF( ( C1.EQ.A ) .AND. ( C2.EQ.A ) .AND. ( D1.EQ.A ) .AND.
     $    ( D2.EQ.A ) ) THEN
         EMIN = EMIN - 1
         A = B1
         B1 = DLAMC3A / BASEZERO )
         C1 = DLAMC3B1*BASEZERO )
         D1 = ZERO
         DO 20 I = 1BASE
            D1 = D1 + B1
   20    CONTINUE
         B2 = DLAMC3A*RBASEZERO )
         C2 = DLAMC3B2 / RBASEZERO )
         D2 = ZERO
         DO 30 I = 1BASE
            D2 = D2 + B2
   30    CONTINUE
         GO TO 10
      END IF
*+    END WHILE
*
      RETURN
*
*     End of DLAMC4
*
      END
*
************************************************************************
*
      SUBROUTINE DLAMC5BETAPEMINIEEEEMAXRMAX )
*
*  -- LAPACK auxiliary routine (version 3.3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2010
*
*     .. Scalar Arguments ..
      LOGICAL            IEEE
      INTEGER            BETAEMAXEMINP
      DOUBLE PRECISION   RMAX
*     ..
*
*  Purpose
*  =======
*
*  DLAMC5 attempts to compute RMAX, the largest machine floating-point
*  number, without overflow.  It assumes that EMAX + abs(EMIN) sum
*  approximately to a power of 2.  It will fail on machines where this
*  assumption does not hold, for example, the Cyber 205 (EMIN = -28625,
*  EMAX = 28718).  It will also fail if the value supplied for EMIN is
*  too large (i.e. too close to zero), probably with overflow.
*
*  Arguments
*  =========
*
*  BETA    (input) INTEGER
*          The base of floating-point arithmetic.
*
*  P       (input) INTEGER
*          The number of base BETA digits in the mantissa of a
*          floating-point value.
*
*  EMIN    (input) INTEGER
*          The minimum exponent before (gradual) underflow.
*
*  IEEE    (input) LOGICAL
*          A logical flag specifying whether or not the arithmetic
*          system is thought to comply with the IEEE standard.
*
*  EMAX    (output) INTEGER
*          The largest exponent before overflow
*
*  RMAX    (output) DOUBLE PRECISION
*          The largest machine floating-point number.
*
* =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZEROONE
      PARAMETER          ( ZERO = 0.0D0ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            EXBITSEXPSUMILEXPNBITSTRYUEXP
      DOUBLE PRECISION   OLDYRECBASYZ
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMC3
      EXTERNAL           DLAMC3
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MOD
*     ..
*     .. Executable Statements ..
*
*     First compute LEXP and UEXP, two powers of 2 that bound
*     abs(EMIN). We then assume that EMAX + abs(EMIN) will sum
*     approximately to the bound that is closest to abs(EMIN).
*     (EMAX is the exponent of the required number RMAX).
*
      LEXP = 1
      EXBITS = 1
   10 CONTINUE
      TRY = LEXP*2
      IFTRY.LE.-EMIN ) ) THEN
         LEXP = TRY
         EXBITS = EXBITS + 1
         GO TO 10
      END IF
      IFLEXP.EQ.-EMIN ) THEN
         UEXP = LEXP
      ELSE
         UEXP = TRY
         EXBITS = EXBITS + 1
      END IF
*
*     Now -LEXP is less than or equal to EMIN, and -UEXP is greater
*     than or equal to EMIN. EXBITS is the number of bits needed to
*     store the exponent.
*
      IF( ( UEXP+EMIN ).GT.-LEXP-EMIN ) ) THEN
         EXPSUM = 2*LEXP
      ELSE
         EXPSUM = 2*UEXP
      END IF
*
*     EXPSUM is the exponent range, approximately equal to
*     EMAX - EMIN + 1 .
*
      EMAX = EXPSUM + EMIN - 1
      NBITS = 1 + EXBITS + P
*
*     NBITS is the total number of bits needed to store a
*     floating-point number.
*
      IF( ( MODNBITS2 ).EQ.1 ) .AND. ( BETA.EQ.2 ) ) THEN
*
*        Either there are an odd number of bits used to store a
*        floating-point number, which is unlikely, or some bits are
*        not used in the representation of numbers, which is possible,
*        (e.g. Cray machines) or the mantissa has an implicit bit,
*        (e.g. IEEE machines, Dec Vax machines), which is perhaps the
*        most likely. We have to assume the last alternative.
*        If this is true, then we need to reduce EMAX by one because
*        there must be some way of representing zero in an implicit-bit
*        system. On machines like Cray, we are reducing EMAX by one
*        unnecessarily.
*
         EMAX = EMAX - 1
      END IF
*
      IFIEEE ) THEN
*
*        Assume we are on an IEEE machine which reserves one exponent
*        for infinity and NaN.
*
         EMAX = EMAX - 1
      END IF
*
*     Now create RMAX, the largest machine number, which should
*     be equal to (1.0 - BETA**(-P)) * BETA**EMAX .
*
*     First compute 1.0 - BETA**(-P), being careful that the
*     result is less than 1.0 .
*
      RECBAS = ONE / BETA
      Z = BETA - ONE
      Y = ZERO
      DO 20 I = 1P
         Z = Z*RECBAS
         IFY.LT.ONE )
     $      OLDY = Y
         Y = DLAMC3YZ )
   20 CONTINUE
      IFY.GE.ONE )
     $   Y = OLDY
*
*     Now multiply by BETA**EMAX to get RMAX.
*
      DO 30 I = 1EMAX
         Y = DLAMC3Y*BETAZERO )
   30 CONTINUE
*
      RMAX = Y
      RETURN
*
*     End of DLAMC5
*
      END