1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
SUBROUTINE CGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
$ LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, $ RCOND, FERR, BERR, WORK, RWORK, INFO ) * * -- LAPACK driver routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER EQUED, FACT, TRANS INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS REAL RCOND * .. * .. Array Arguments .. INTEGER IPIV( * ) REAL BERR( * ), C( * ), FERR( * ), R( * ), $ RWORK( * ) COMPLEX AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ), $ WORK( * ), X( LDX, * ) * .. * * Purpose * ======= * * CGBSVX uses the LU factorization to compute the solution to a complex * system of linear equations A * X = B, A**T * X = B, or A**H * X = B, * where A is a band matrix of order N with KL subdiagonals and KU * superdiagonals, and X and B are N-by-NRHS matrices. * * Error bounds on the solution and a condition estimate are also * provided. * * Description * =========== * * The following steps are performed by this subroutine: * * 1. If FACT = 'E', real scaling factors are computed to equilibrate * the system: * TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B * TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B * TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B * Whether or not the system will be equilibrated depends on the * scaling of the matrix A, but if equilibration is used, A is * overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') * or diag(C)*B (if TRANS = 'T' or 'C'). * * 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the * matrix A (after equilibration if FACT = 'E') as * A = L * U, * where L is a product of permutation and unit lower triangular * matrices with KL subdiagonals, and U is upper triangular with * KL+KU superdiagonals. * * 3. If some U(i,i)=0, so that U is exactly singular, then the routine * returns with INFO = i. Otherwise, the factored form of A is used * to estimate the condition number of the matrix A. If the * reciprocal of the condition number is less than machine precision, * INFO = N+1 is returned as a warning, but the routine still goes on * to solve for X and compute error bounds as described below. * * 4. The system of equations is solved for X using the factored form * of A. * * 5. Iterative refinement is applied to improve the computed solution * matrix and calculate error bounds and backward error estimates * for it. * * 6. If equilibration was used, the matrix X is premultiplied by * diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so * that it solves the original system before equilibration. * * Arguments * ========= * * FACT (input) CHARACTER*1 * Specifies whether or not the factored form of the matrix A is * supplied on entry, and if not, whether the matrix A should be * equilibrated before it is factored. * = 'F': On entry, AFB and IPIV contain the factored form of * A. If EQUED is not 'N', the matrix A has been * equilibrated with scaling factors given by R and C. * AB, AFB, and IPIV are not modified. * = 'N': The matrix A will be copied to AFB and factored. * = 'E': The matrix A will be equilibrated if necessary, then * copied to AFB and factored. * * TRANS (input) CHARACTER*1 * Specifies the form of the system of equations. * = 'N': A * X = B (No transpose) * = 'T': A**T * X = B (Transpose) * = 'C': A**H * X = B (Conjugate transpose) * * N (input) INTEGER * The number of linear equations, i.e., the order of the * matrix A. N >= 0. * * KL (input) INTEGER * The number of subdiagonals within the band of A. KL >= 0. * * KU (input) INTEGER * The number of superdiagonals within the band of A. KU >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrices B and X. NRHS >= 0. * * AB (input/output) COMPLEX array, dimension (LDAB,N) * On entry, the matrix A in band storage, in rows 1 to KL+KU+1. * The j-th column of A is stored in the j-th column of the * array AB as follows: * AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) * * If FACT = 'F' and EQUED is not 'N', then A must have been * equilibrated by the scaling factors in R and/or C. AB is not * modified if FACT = 'F' or 'N', or if FACT = 'E' and * EQUED = 'N' on exit. * * On exit, if EQUED .ne. 'N', A is scaled as follows: * EQUED = 'R': A := diag(R) * A * EQUED = 'C': A := A * diag(C) * EQUED = 'B': A := diag(R) * A * diag(C). * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KL+KU+1. * * AFB (input or output) COMPLEX array, dimension (LDAFB,N) * If FACT = 'F', then AFB is an input argument and on entry * contains details of the LU factorization of the band matrix * A, as computed by CGBTRF. U is stored as an upper triangular * band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, * and the multipliers used during the factorization are stored * in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is * the factored form of the equilibrated matrix A. * * If FACT = 'N', then AFB is an output argument and on exit * returns details of the LU factorization of A. * * If FACT = 'E', then AFB is an output argument and on exit * returns details of the LU factorization of the equilibrated * matrix A (see the description of AB for the form of the * equilibrated matrix). * * LDAFB (input) INTEGER * The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. * * IPIV (input or output) INTEGER array, dimension (N) * If FACT = 'F', then IPIV is an input argument and on entry * contains the pivot indices from the factorization A = L*U * as computed by CGBTRF; row i of the matrix was interchanged * with row IPIV(i). * * If FACT = 'N', then IPIV is an output argument and on exit * contains the pivot indices from the factorization A = L*U * of the original matrix A. * * If FACT = 'E', then IPIV is an output argument and on exit * contains the pivot indices from the factorization A = L*U * of the equilibrated matrix A. * * EQUED (input or output) CHARACTER*1 * Specifies the form of equilibration that was done. * = 'N': No equilibration (always true if FACT = 'N'). * = 'R': Row equilibration, i.e., A has been premultiplied by * diag(R). * = 'C': Column equilibration, i.e., A has been postmultiplied * by diag(C). * = 'B': Both row and column equilibration, i.e., A has been * replaced by diag(R) * A * diag(C). * EQUED is an input argument if FACT = 'F'; otherwise, it is an * output argument. * * R (input or output) REAL array, dimension (N) * The row scale factors for A. If EQUED = 'R' or 'B', A is * multiplied on the left by diag(R); if EQUED = 'N' or 'C', R * is not accessed. R is an input argument if FACT = 'F'; * otherwise, R is an output argument. If FACT = 'F' and * EQUED = 'R' or 'B', each element of R must be positive. * * C (input or output) REAL array, dimension (N) * The column scale factors for A. If EQUED = 'C' or 'B', A is * multiplied on the right by diag(C); if EQUED = 'N' or 'R', C * is not accessed. C is an input argument if FACT = 'F'; * otherwise, C is an output argument. If FACT = 'F' and * EQUED = 'C' or 'B', each element of C must be positive. * * B (input/output) COMPLEX array, dimension (LDB,NRHS) * On entry, the right hand side matrix B. * On exit, * if EQUED = 'N', B is not modified; * if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by * diag(R)*B; * if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is * overwritten by diag(C)*B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * X (output) COMPLEX array, dimension (LDX,NRHS) * If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X * to the original system of equations. Note that A and B are * modified on exit if EQUED .ne. 'N', and the solution to the * equilibrated system is inv(diag(C))*X if TRANS = 'N' and * EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' * and EQUED = 'R' or 'B'. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(1,N). * * RCOND (output) REAL * The estimate of the reciprocal condition number of the matrix * A after equilibration (if done). If RCOND is less than the * machine precision (in particular, if RCOND = 0), the matrix * is singular to working precision. This condition is * indicated by a return code of INFO > 0. * * FERR (output) REAL array, dimension (NRHS) * The estimated forward error bound for each solution vector * X(j) (the j-th column of the solution matrix X). * If XTRUE is the true solution corresponding to X(j), FERR(j) * is an estimated upper bound for the magnitude of the largest * element in (X(j) - XTRUE) divided by the magnitude of the * largest element in X(j). The estimate is as reliable as * the estimate for RCOND, and is almost always a slight * overestimate of the true error. * * BERR (output) REAL array, dimension (NRHS) * The componentwise relative backward error of each solution * vector X(j) (i.e., the smallest relative change in * any element of A or B that makes X(j) an exact solution). * * WORK (workspace) COMPLEX array, dimension (2*N) * * RWORK (workspace/output) REAL array, dimension (N) * On exit, RWORK(1) contains the reciprocal pivot growth * factor norm(A)/norm(U). The "max absolute element" norm is * used. If RWORK(1) is much less than 1, then the stability * of the LU factorization of the (equilibrated) matrix A * could be poor. This also means that the solution X, condition * estimator RCOND, and forward error bound FERR could be * unreliable. If factorization fails with 0 * RWORK(1) contains the reciprocal pivot growth factor for the * leading INFO columns of A. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, and i is * <= N: U(i,i) is exactly zero. The factorization * has been completed, but the factor U is exactly * singular, so the solution and error bounds * could not be computed. RCOND = 0 is returned. * = N+1: U is nonsingular, but RCOND is less than machine * precision, meaning that the matrix is singular * to working precision. Nevertheless, the * solution and error bounds are computed because * there are a number of situations where the * computed solution can be more accurate than the * value of RCOND would suggest. * * ===================================================================== * Moved setting of INFO = N+1 so INFO does not subsequently get * overwritten. Sven, 17 Mar 05. * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU CHARACTER NORM INTEGER I, INFEQU, J, J1, J2 REAL AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN, $ ROWCND, RPVGRW, SMLNUM * .. * .. External Functions .. LOGICAL LSAME REAL CLANGB, CLANTB, SLAMCH EXTERNAL LSAME, CLANGB, CLANTB, SLAMCH * .. * .. External Subroutines .. EXTERNAL CCOPY, CGBCON, CGBEQU, CGBRFS, CGBTRF, CGBTRS, $ CLACPY, CLAQGB, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN * .. * .. Executable Statements .. * INFO = 0 NOFACT = LSAME( FACT, 'N' ) EQUIL = LSAME( FACT, 'E' ) NOTRAN = LSAME( TRANS, 'N' ) IF( NOFACT .OR. EQUIL ) THEN EQUED = 'N' ROWEQU = .FALSE. COLEQU = .FALSE. ELSE ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) SMLNUM = SLAMCH( 'Safe minimum' ) BIGNUM = ONE / SMLNUM END IF * * Test the input parameters. * IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) ) $ THEN INFO = -1 ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT. $ LSAME( TRANS, 'C' ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( KL.LT.0 ) THEN INFO = -4 ELSE IF( KU.LT.0 ) THEN INFO = -5 ELSE IF( NRHS.LT.0 ) THEN INFO = -6 ELSE IF( LDAB.LT.KL+KU+1 ) THEN INFO = -8 ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN INFO = -10 ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT. $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN INFO = -12 ELSE IF( ROWEQU ) THEN RCMIN = BIGNUM RCMAX = ZERO DO 10 J = 1, N RCMIN = MIN( RCMIN, R( J ) ) RCMAX = MAX( RCMAX, R( J ) ) 10 CONTINUE IF( RCMIN.LE.ZERO ) THEN INFO = -13 ELSE IF( N.GT.0 ) THEN ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) ELSE ROWCND = ONE END IF END IF IF( COLEQU .AND. INFO.EQ.0 ) THEN RCMIN = BIGNUM RCMAX = ZERO DO 20 J = 1, N RCMIN = MIN( RCMIN, C( J ) ) RCMAX = MAX( RCMAX, C( J ) ) 20 CONTINUE IF( RCMIN.LE.ZERO ) THEN INFO = -14 ELSE IF( N.GT.0 ) THEN COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) ELSE COLCND = ONE END IF END IF IF( INFO.EQ.0 ) THEN IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -16 ELSE IF( LDX.LT.MAX( 1, N ) ) THEN INFO = -18 END IF END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGBSVX', -INFO ) RETURN END IF * IF( EQUIL ) THEN * * Compute row and column scalings to equilibrate the matrix A. * CALL CGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, $ AMAX, INFEQU ) IF( INFEQU.EQ.0 ) THEN * * Equilibrate the matrix. * CALL CLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, $ AMAX, EQUED ) ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) END IF END IF * * Scale the right hand side. * IF( NOTRAN ) THEN IF( ROWEQU ) THEN DO 40 J = 1, NRHS DO 30 I = 1, N B( I, J ) = R( I )*B( I, J ) 30 CONTINUE 40 CONTINUE END IF ELSE IF( COLEQU ) THEN DO 60 J = 1, NRHS DO 50 I = 1, N B( I, J ) = C( I )*B( I, J ) 50 CONTINUE 60 CONTINUE END IF * IF( NOFACT .OR. EQUIL ) THEN * * Compute the LU factorization of the band matrix A. * DO 70 J = 1, N J1 = MAX( J-KU, 1 ) J2 = MIN( J+KL, N ) CALL CCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1, $ AFB( KL+KU+1-J+J1, J ), 1 ) 70 CONTINUE * CALL CGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO ) * * Return if INFO is non-zero. * IF( INFO.GT.0 ) THEN * * Compute the reciprocal pivot growth factor of the * leading rank-deficient INFO columns of A. * ANORM = ZERO DO 90 J = 1, INFO DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 ) ANORM = MAX( ANORM, ABS( AB( I, J ) ) ) 80 CONTINUE 90 CONTINUE RPVGRW = CLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ), $ AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB, $ RWORK ) IF( RPVGRW.EQ.ZERO ) THEN RPVGRW = ONE ELSE RPVGRW = ANORM / RPVGRW END IF RWORK( 1 ) = RPVGRW RCOND = ZERO RETURN END IF END IF * * Compute the norm of the matrix A and the * reciprocal pivot growth factor RPVGRW. * IF( NOTRAN ) THEN NORM = '1' ELSE NORM = 'I' END IF ANORM = CLANGB( NORM, N, KL, KU, AB, LDAB, RWORK ) RPVGRW = CLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, RWORK ) IF( RPVGRW.EQ.ZERO ) THEN RPVGRW = ONE ELSE RPVGRW = CLANGB( 'M', N, KL, KU, AB, LDAB, RWORK ) / RPVGRW END IF * * Compute the reciprocal of the condition number of A. * CALL CGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND, $ WORK, RWORK, INFO ) * * Compute the solution matrix X. * CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDX ) CALL CGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX, $ INFO ) * * Use iterative refinement to improve the computed solution and * compute error bounds and backward error estimates for it. * CALL CGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, $ B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO ) * * Transform the solution matrix X to a solution of the original * system. * IF( NOTRAN ) THEN IF( COLEQU ) THEN DO 110 J = 1, NRHS DO 100 I = 1, N X( I, J ) = C( I )*X( I, J ) 100 CONTINUE 110 CONTINUE DO 120 J = 1, NRHS FERR( J ) = FERR( J ) / COLCND 120 CONTINUE END IF ELSE IF( ROWEQU ) THEN DO 140 J = 1, NRHS DO 130 I = 1, N X( I, J ) = R( I )*X( I, J ) 130 CONTINUE 140 CONTINUE DO 150 J = 1, NRHS FERR( J ) = FERR( J ) / ROWCND 150 CONTINUE END IF * * Set INFO = N+1 if the matrix is singular to working precision. * IF( RCOND.LT.SLAMCH( 'Epsilon' ) ) $ INFO = N + 1 * RWORK( 1 ) = RPVGRW RETURN * * End of CGBSVX * END |