1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
SUBROUTINE CGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, W, VS,
$ LDVS, WORK, LWORK, RWORK, BWORK, INFO ) * * -- LAPACK driver routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER JOBVS, SORT INTEGER INFO, LDA, LDVS, LWORK, N, SDIM * .. * .. Array Arguments .. LOGICAL BWORK( * ) REAL RWORK( * ) COMPLEX A( LDA, * ), VS( LDVS, * ), W( * ), WORK( * ) * .. * .. Function Arguments .. LOGICAL SELECT EXTERNAL SELECT * .. * * Purpose * ======= * * CGEES computes for an N-by-N complex nonsymmetric matrix A, the * eigenvalues, the Schur form T, and, optionally, the matrix of Schur * vectors Z. This gives the Schur factorization A = Z*T*(Z**H). * * Optionally, it also orders the eigenvalues on the diagonal of the * Schur form so that selected eigenvalues are at the top left. * The leading columns of Z then form an orthonormal basis for the * invariant subspace corresponding to the selected eigenvalues. * A complex matrix is in Schur form if it is upper triangular. * * Arguments * ========= * * JOBVS (input) CHARACTER*1 * = 'N': Schur vectors are not computed; * = 'V': Schur vectors are computed. * * SORT (input) CHARACTER*1 * Specifies whether or not to order the eigenvalues on the * diagonal of the Schur form. * = 'N': Eigenvalues are not ordered: * = 'S': Eigenvalues are ordered (see SELECT). * * SELECT (external procedure) LOGICAL FUNCTION of one COMPLEX argument * SELECT must be declared EXTERNAL in the calling subroutine. * If SORT = 'S', SELECT is used to select eigenvalues to order * to the top left of the Schur form. * IF SORT = 'N', SELECT is not referenced. * The eigenvalue W(j) is selected if SELECT(W(j)) is true. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input/output) COMPLEX array, dimension (LDA,N) * On entry, the N-by-N matrix A. * On exit, A has been overwritten by its Schur form T. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * SDIM (output) INTEGER * If SORT = 'N', SDIM = 0. * If SORT = 'S', SDIM = number of eigenvalues for which * SELECT is true. * * W (output) COMPLEX array, dimension (N) * W contains the computed eigenvalues, in the same order that * they appear on the diagonal of the output Schur form T. * * VS (output) COMPLEX array, dimension (LDVS,N) * If JOBVS = 'V', VS contains the unitary matrix Z of Schur * vectors. * If JOBVS = 'N', VS is not referenced. * * LDVS (input) INTEGER * The leading dimension of the array VS. LDVS >= 1; if * JOBVS = 'V', LDVS >= N. * * WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= max(1,2*N). * For good performance, LWORK must generally be larger. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * RWORK (workspace) REAL array, dimension (N) * * BWORK (workspace) LOGICAL array, dimension (N) * Not referenced if SORT = 'N'. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value. * > 0: if INFO = i, and i is * <= N: the QR algorithm failed to compute all the * eigenvalues; elements 1:ILO-1 and i+1:N of W * contain those eigenvalues which have converged; * if JOBVS = 'V', VS contains the matrix which * reduces A to its partially converged Schur form. * = N+1: the eigenvalues could not be reordered because * some eigenvalues were too close to separate (the * problem is very ill-conditioned); * = N+2: after reordering, roundoff changed values of * some complex eigenvalues so that leading * eigenvalues in the Schur form no longer satisfy * SELECT = .TRUE.. This could also be caused by * underflow due to scaling. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 ) * .. * .. Local Scalars .. LOGICAL LQUERY, SCALEA, WANTST, WANTVS INTEGER HSWORK, I, IBAL, ICOND, IERR, IEVAL, IHI, ILO, $ ITAU, IWRK, MAXWRK, MINWRK REAL ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM * .. * .. Local Arrays .. REAL DUM( 1 ) * .. * .. External Subroutines .. EXTERNAL CCOPY, CGEBAK, CGEBAL, CGEHRD, CHSEQR, CLACPY, $ CLASCL, CTRSEN, CUNGHR, SLABAD, XERBLA * .. * .. External Functions .. LOGICAL LSAME INTEGER ILAENV REAL CLANGE, SLAMCH EXTERNAL LSAME, ILAENV, CLANGE, SLAMCH * .. * .. Intrinsic Functions .. INTRINSIC MAX, SQRT * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 LQUERY = ( LWORK.EQ.-1 ) WANTVS = LSAME( JOBVS, 'V' ) WANTST = LSAME( SORT, 'S' ) IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN INFO = -1 ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -6 ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN INFO = -10 END IF * * Compute workspace * (Note: Comments in the code beginning "Workspace:" describe the * minimal amount of workspace needed at that point in the code, * as well as the preferred amount for good performance. * CWorkspace refers to complex workspace, and RWorkspace to real * workspace. NB refers to the optimal block size for the * immediately following subroutine, as returned by ILAENV. * HSWORK refers to the workspace preferred by CHSEQR, as * calculated below. HSWORK is computed assuming ILO=1 and IHI=N, * the worst case.) * IF( INFO.EQ.0 ) THEN IF( N.EQ.0 ) THEN MINWRK = 1 MAXWRK = 1 ELSE MAXWRK = N + N*ILAENV( 1, 'CGEHRD', ' ', N, 1, N, 0 ) MINWRK = 2*N * CALL CHSEQR( 'S', JOBVS, N, 1, N, A, LDA, W, VS, LDVS, $ WORK, -1, IEVAL ) HSWORK = WORK( 1 ) * IF( .NOT.WANTVS ) THEN MAXWRK = MAX( MAXWRK, HSWORK ) ELSE MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'CUNGHR', $ ' ', N, 1, N, -1 ) ) MAXWRK = MAX( MAXWRK, HSWORK ) END IF END IF WORK( 1 ) = MAXWRK * IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN INFO = -12 END IF END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGEES ', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) THEN SDIM = 0 RETURN END IF * * Get machine constants * EPS = SLAMCH( 'P' ) SMLNUM = SLAMCH( 'S' ) BIGNUM = ONE / SMLNUM CALL SLABAD( SMLNUM, BIGNUM ) SMLNUM = SQRT( SMLNUM ) / EPS BIGNUM = ONE / SMLNUM * * Scale A if max element outside range [SMLNUM,BIGNUM] * ANRM = CLANGE( 'M', N, N, A, LDA, DUM ) SCALEA = .FALSE. IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN SCALEA = .TRUE. CSCALE = SMLNUM ELSE IF( ANRM.GT.BIGNUM ) THEN SCALEA = .TRUE. CSCALE = BIGNUM END IF IF( SCALEA ) $ CALL CLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR ) * * Permute the matrix to make it more nearly triangular * (CWorkspace: none) * (RWorkspace: need N) * IBAL = 1 CALL CGEBAL( 'P', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR ) * * Reduce to upper Hessenberg form * (CWorkspace: need 2*N, prefer N+N*NB) * (RWorkspace: none) * ITAU = 1 IWRK = N + ITAU CALL CGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ), $ LWORK-IWRK+1, IERR ) * IF( WANTVS ) THEN * * Copy Householder vectors to VS * CALL CLACPY( 'L', N, N, A, LDA, VS, LDVS ) * * Generate unitary matrix in VS * (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) * (RWorkspace: none) * CALL CUNGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ), $ LWORK-IWRK+1, IERR ) END IF * SDIM = 0 * * Perform QR iteration, accumulating Schur vectors in VS if desired * (CWorkspace: need 1, prefer HSWORK (see comments) ) * (RWorkspace: none) * IWRK = ITAU CALL CHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, W, VS, LDVS, $ WORK( IWRK ), LWORK-IWRK+1, IEVAL ) IF( IEVAL.GT.0 ) $ INFO = IEVAL * * Sort eigenvalues if desired * IF( WANTST .AND. INFO.EQ.0 ) THEN IF( SCALEA ) $ CALL CLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, W, N, IERR ) DO 10 I = 1, N BWORK( I ) = SELECT( W( I ) ) 10 CONTINUE * * Reorder eigenvalues and transform Schur vectors * (CWorkspace: none) * (RWorkspace: none) * CALL CTRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, W, SDIM, $ S, SEP, WORK( IWRK ), LWORK-IWRK+1, ICOND ) END IF * IF( WANTVS ) THEN * * Undo balancing * (CWorkspace: none) * (RWorkspace: need N) * CALL CGEBAK( 'P', 'R', N, ILO, IHI, RWORK( IBAL ), N, VS, LDVS, $ IERR ) END IF * IF( SCALEA ) THEN * * Undo scaling for the Schur form of A * CALL CLASCL( 'U', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR ) CALL CCOPY( N, A, LDA+1, W, 1 ) END IF * WORK( 1 ) = MAXWRK RETURN * * End of CGEES * END |