1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
SUBROUTINE CPTTRS( UPLO, N, NRHS, D, E, B, LDB, INFO )
* * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDB, N, NRHS * .. * .. Array Arguments .. REAL D( * ) COMPLEX B( LDB, * ), E( * ) * .. * * Purpose * ======= * * CPTTRS solves a tridiagonal system of the form * A * X = B * using the factorization A = U**H*D*U or A = L*D*L**H computed by CPTTRF. * D is a diagonal matrix specified in the vector D, U (or L) is a unit * bidiagonal matrix whose superdiagonal (subdiagonal) is specified in * the vector E, and X and B are N by NRHS matrices. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies the form of the factorization and whether the * vector E is the superdiagonal of the upper bidiagonal factor * U or the subdiagonal of the lower bidiagonal factor L. * = 'U': A = U**H*D*U, E is the superdiagonal of U * = 'L': A = L*D*L**H, E is the subdiagonal of L * * N (input) INTEGER * The order of the tridiagonal matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * D (input) REAL array, dimension (N) * The n diagonal elements of the diagonal matrix D from the * factorization A = U**H*D*U or A = L*D*L**H. * * E (input) COMPLEX array, dimension (N-1) * If UPLO = 'U', the (n-1) superdiagonal elements of the unit * bidiagonal factor U from the factorization A = U**H*D*U. * If UPLO = 'L', the (n-1) subdiagonal elements of the unit * bidiagonal factor L from the factorization A = L*D*L**H. * * B (input/output) REAL array, dimension (LDB,NRHS) * On entry, the right hand side vectors B for the system of * linear equations. * On exit, the solution vectors, X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -k, the k-th argument had an illegal value * * ===================================================================== * * .. Local Scalars .. LOGICAL UPPER INTEGER IUPLO, J, JB, NB * .. * .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV * .. * .. External Subroutines .. EXTERNAL CPTTS2, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input arguments. * INFO = 0 UPPER = ( UPLO.EQ.'U' .OR. UPLO.EQ.'u' ) IF( .NOT.UPPER .AND. .NOT.( UPLO.EQ.'L' .OR. UPLO.EQ.'l' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( NRHS.LT.0 ) THEN INFO = -3 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CPTTRS', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 .OR. NRHS.EQ.0 ) $ RETURN * * Determine the number of right-hand sides to solve at a time. * IF( NRHS.EQ.1 ) THEN NB = 1 ELSE NB = MAX( 1, ILAENV( 1, 'CPTTRS', UPLO, N, NRHS, -1, -1 ) ) END IF * * Decode UPLO * IF( UPPER ) THEN IUPLO = 1 ELSE IUPLO = 0 END IF * IF( NB.GE.NRHS ) THEN CALL CPTTS2( IUPLO, N, NRHS, D, E, B, LDB ) ELSE DO 10 J = 1, NRHS, NB JB = MIN( NRHS-J+1, NB ) CALL CPTTS2( IUPLO, N, JB, D, E, B( 1, J ), LDB ) 10 CONTINUE END IF * RETURN * * End of CPTTRS * END |