1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
SUBROUTINE CTGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
$ LDZ, J1, INFO ) * * -- LAPACK auxiliary routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. LOGICAL WANTQ, WANTZ INTEGER INFO, J1, LDA, LDB, LDQ, LDZ, N * .. * .. Array Arguments .. COMPLEX A( LDA, * ), B( LDB, * ), Q( LDQ, * ), $ Z( LDZ, * ) * .. * * Purpose * ======= * * CTGEX2 swaps adjacent diagonal 1 by 1 blocks (A11,B11) and (A22,B22) * in an upper triangular matrix pair (A, B) by an unitary equivalence * transformation. * * (A, B) must be in generalized Schur canonical form, that is, A and * B are both upper triangular. * * Optionally, the matrices Q and Z of generalized Schur vectors are * updated. * * Q(in) * A(in) * Z(in)**H = Q(out) * A(out) * Z(out)**H * Q(in) * B(in) * Z(in)**H = Q(out) * B(out) * Z(out)**H * * * Arguments * ========= * * WANTQ (input) LOGICAL * .TRUE. : update the left transformation matrix Q; * .FALSE.: do not update Q. * * WANTZ (input) LOGICAL * .TRUE. : update the right transformation matrix Z; * .FALSE.: do not update Z. * * N (input) INTEGER * The order of the matrices A and B. N >= 0. * * A (input/output) COMPLEX arrays, dimensions (LDA,N) * On entry, the matrix A in the pair (A, B). * On exit, the updated matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * B (input/output) COMPLEX arrays, dimensions (LDB,N) * On entry, the matrix B in the pair (A, B). * On exit, the updated matrix B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * Q (input/output) COMPLEX array, dimension (LDZ,N) * If WANTQ = .TRUE, on entry, the unitary matrix Q. On exit, * the updated matrix Q. * Not referenced if WANTQ = .FALSE.. * * LDQ (input) INTEGER * The leading dimension of the array Q. LDQ >= 1; * If WANTQ = .TRUE., LDQ >= N. * * Z (input/output) COMPLEX array, dimension (LDZ,N) * If WANTZ = .TRUE, on entry, the unitary matrix Z. On exit, * the updated matrix Z. * Not referenced if WANTZ = .FALSE.. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= 1; * If WANTZ = .TRUE., LDZ >= N. * * J1 (input) INTEGER * The index to the first block (A11, B11). * * INFO (output) INTEGER * =0: Successful exit. * =1: The transformed matrix pair (A, B) would be too far * from generalized Schur form; the problem is ill- * conditioned. * * * Further Details * =============== * * Based on contributions by * Bo Kagstrom and Peter Poromaa, Department of Computing Science, * Umea University, S-901 87 Umea, Sweden. * * In the current code both weak and strong stability tests are * performed. The user can omit the strong stability test by changing * the internal logical parameter WANDS to .FALSE.. See ref. [2] for * details. * * [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the * Generalized Real Schur Form of a Regular Matrix Pair (A, B), in * M.S. Moonen et al (eds), Linear Algebra for Large Scale and * Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. * * [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified * Eigenvalues of a Regular Matrix Pair (A, B) and Condition * Estimation: Theory, Algorithms and Software, Report UMINF-94.04, * Department of Computing Science, Umea University, S-901 87 Umea, * Sweden, 1994. Also as LAPACK Working Note 87. To appear in * Numerical Algorithms, 1996. * * ===================================================================== * * .. Parameters .. COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) REAL TWENTY PARAMETER ( TWENTY = 2.0E+1 ) INTEGER LDST PARAMETER ( LDST = 2 ) LOGICAL WANDS PARAMETER ( WANDS = .TRUE. ) * .. * .. Local Scalars .. LOGICAL STRONG, WEAK INTEGER I, M REAL CQ, CZ, EPS, SA, SB, SCALE, SMLNUM, SS, SUM, $ THRESH, WS COMPLEX CDUM, F, G, SQ, SZ * .. * .. Local Arrays .. COMPLEX S( LDST, LDST ), T( LDST, LDST ), WORK( 8 ) * .. * .. External Functions .. REAL SLAMCH EXTERNAL SLAMCH * .. * .. External Subroutines .. EXTERNAL CLACPY, CLARTG, CLASSQ, CROT * .. * .. Intrinsic Functions .. INTRINSIC ABS, CONJG, MAX, REAL, SQRT * .. * .. Executable Statements .. * INFO = 0 * * Quick return if possible * IF( N.LE.1 ) $ RETURN * M = LDST WEAK = .FALSE. STRONG = .FALSE. * * Make a local copy of selected block in (A, B) * CALL CLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST ) CALL CLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST ) * * Compute the threshold for testing the acceptance of swapping. * EPS = SLAMCH( 'P' ) SMLNUM = SLAMCH( 'S' ) / EPS SCALE = REAL( CZERO ) SUM = REAL( CONE ) CALL CLACPY( 'Full', M, M, S, LDST, WORK, M ) CALL CLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M ) CALL CLASSQ( 2*M*M, WORK, 1, SCALE, SUM ) SA = SCALE*SQRT( SUM ) * * THRES has been changed from * THRESH = MAX( TEN*EPS*SA, SMLNUM ) * to * THRESH = MAX( TWENTY*EPS*SA, SMLNUM ) * on 04/01/10. * "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by * Jim Demmel and Guillaume Revy. See forum post 1783. * THRESH = MAX( TWENTY*EPS*SA, SMLNUM ) * * Compute unitary QL and RQ that swap 1-by-1 and 1-by-1 blocks * using Givens rotations and perform the swap tentatively. * F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 ) G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 ) SA = ABS( S( 2, 2 ) ) SB = ABS( T( 2, 2 ) ) CALL CLARTG( G, F, CZ, SZ, CDUM ) SZ = -SZ CALL CROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, CZ, CONJG( SZ ) ) CALL CROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, CZ, CONJG( SZ ) ) IF( SA.GE.SB ) THEN CALL CLARTG( S( 1, 1 ), S( 2, 1 ), CQ, SQ, CDUM ) ELSE CALL CLARTG( T( 1, 1 ), T( 2, 1 ), CQ, SQ, CDUM ) END IF CALL CROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, CQ, SQ ) CALL CROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, CQ, SQ ) * * Weak stability test: |S21| + |T21| <= O(EPS F-norm((S, T))) * WS = ABS( S( 2, 1 ) ) + ABS( T( 2, 1 ) ) WEAK = WS.LE.THRESH IF( .NOT.WEAK ) $ GO TO 20 * IF( WANDS ) THEN * * Strong stability test: * F-norm((A-QL**H*S*QR, B-QL**H*T*QR)) <= O(EPS*F-norm((A, B))) * CALL CLACPY( 'Full', M, M, S, LDST, WORK, M ) CALL CLACPY( 'Full', M, M, T, LDST, WORK( M*M+1 ), M ) CALL CROT( 2, WORK, 1, WORK( 3 ), 1, CZ, -CONJG( SZ ) ) CALL CROT( 2, WORK( 5 ), 1, WORK( 7 ), 1, CZ, -CONJG( SZ ) ) CALL CROT( 2, WORK, 2, WORK( 2 ), 2, CQ, -SQ ) CALL CROT( 2, WORK( 5 ), 2, WORK( 6 ), 2, CQ, -SQ ) DO 10 I = 1, 2 WORK( I ) = WORK( I ) - A( J1+I-1, J1 ) WORK( I+2 ) = WORK( I+2 ) - A( J1+I-1, J1+1 ) WORK( I+4 ) = WORK( I+4 ) - B( J1+I-1, J1 ) WORK( I+6 ) = WORK( I+6 ) - B( J1+I-1, J1+1 ) 10 CONTINUE SCALE = REAL( CZERO ) SUM = REAL( CONE ) CALL CLASSQ( 2*M*M, WORK, 1, SCALE, SUM ) SS = SCALE*SQRT( SUM ) STRONG = SS.LE.THRESH IF( .NOT.STRONG ) $ GO TO 20 END IF * * If the swap is accepted ("weakly" and "strongly"), apply the * equivalence transformations to the original matrix pair (A,B) * CALL CROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, CZ, CONJG( SZ ) ) CALL CROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, CZ, CONJG( SZ ) ) CALL CROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA, CQ, SQ ) CALL CROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB, CQ, SQ ) * * Set N1 by N2 (2,1) blocks to 0 * A( J1+1, J1 ) = CZERO B( J1+1, J1 ) = CZERO * * Accumulate transformations into Q and Z if requested. * IF( WANTZ ) $ CALL CROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, CZ, CONJG( SZ ) ) IF( WANTQ ) $ CALL CROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, CQ, CONJG( SQ ) ) * * Exit with INFO = 0 if swap was successfully performed. * RETURN * * Exit with INFO = 1 if swap was rejected. * 20 CONTINUE INFO = 1 RETURN * * End of CTGEX2 * END |