1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
SUBROUTINE CTRSNA( JOB, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
$ LDVR, S, SEP, MM, M, WORK, LDWORK, RWORK, $ INFO ) * * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. * * .. Scalar Arguments .. CHARACTER HOWMNY, JOB INTEGER INFO, LDT, LDVL, LDVR, LDWORK, M, MM, N * .. * .. Array Arguments .. LOGICAL SELECT( * ) REAL RWORK( * ), S( * ), SEP( * ) COMPLEX T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), $ WORK( LDWORK, * ) * .. * * Purpose * ======= * * CTRSNA estimates reciprocal condition numbers for specified * eigenvalues and/or right eigenvectors of a complex upper triangular * matrix T (or of any matrix Q*T*Q**H with Q unitary). * * Arguments * ========= * * JOB (input) CHARACTER*1 * Specifies whether condition numbers are required for * eigenvalues (S) or eigenvectors (SEP): * = 'E': for eigenvalues only (S); * = 'V': for eigenvectors only (SEP); * = 'B': for both eigenvalues and eigenvectors (S and SEP). * * HOWMNY (input) CHARACTER*1 * = 'A': compute condition numbers for all eigenpairs; * = 'S': compute condition numbers for selected eigenpairs * specified by the array SELECT. * * SELECT (input) LOGICAL array, dimension (N) * If HOWMNY = 'S', SELECT specifies the eigenpairs for which * condition numbers are required. To select condition numbers * for the j-th eigenpair, SELECT(j) must be set to .TRUE.. * If HOWMNY = 'A', SELECT is not referenced. * * N (input) INTEGER * The order of the matrix T. N >= 0. * * T (input) COMPLEX array, dimension (LDT,N) * The upper triangular matrix T. * * LDT (input) INTEGER * The leading dimension of the array T. LDT >= max(1,N). * * VL (input) COMPLEX array, dimension (LDVL,M) * If JOB = 'E' or 'B', VL must contain left eigenvectors of T * (or of any Q*T*Q**H with Q unitary), corresponding to the * eigenpairs specified by HOWMNY and SELECT. The eigenvectors * must be stored in consecutive columns of VL, as returned by * CHSEIN or CTREVC. * If JOB = 'V', VL is not referenced. * * LDVL (input) INTEGER * The leading dimension of the array VL. * LDVL >= 1; and if JOB = 'E' or 'B', LDVL >= N. * * VR (input) COMPLEX array, dimension (LDVR,M) * If JOB = 'E' or 'B', VR must contain right eigenvectors of T * (or of any Q*T*Q**H with Q unitary), corresponding to the * eigenpairs specified by HOWMNY and SELECT. The eigenvectors * must be stored in consecutive columns of VR, as returned by * CHSEIN or CTREVC. * If JOB = 'V', VR is not referenced. * * LDVR (input) INTEGER * The leading dimension of the array VR. * LDVR >= 1; and if JOB = 'E' or 'B', LDVR >= N. * * S (output) REAL array, dimension (MM) * If JOB = 'E' or 'B', the reciprocal condition numbers of the * selected eigenvalues, stored in consecutive elements of the * array. Thus S(j), SEP(j), and the j-th columns of VL and VR * all correspond to the same eigenpair (but not in general the * j-th eigenpair, unless all eigenpairs are selected). * If JOB = 'V', S is not referenced. * * SEP (output) REAL array, dimension (MM) * If JOB = 'V' or 'B', the estimated reciprocal condition * numbers of the selected eigenvectors, stored in consecutive * elements of the array. * If JOB = 'E', SEP is not referenced. * * MM (input) INTEGER * The number of elements in the arrays S (if JOB = 'E' or 'B') * and/or SEP (if JOB = 'V' or 'B'). MM >= M. * * M (output) INTEGER * The number of elements of the arrays S and/or SEP actually * used to store the estimated condition numbers. * If HOWMNY = 'A', M is set to N. * * WORK (workspace) COMPLEX array, dimension (LDWORK,N+6) * If JOB = 'E', WORK is not referenced. * * LDWORK (input) INTEGER * The leading dimension of the array WORK. * LDWORK >= 1; and if JOB = 'V' or 'B', LDWORK >= N. * * RWORK (workspace) REAL array, dimension (N) * If JOB = 'E', RWORK is not referenced. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * Further Details * =============== * * The reciprocal of the condition number of an eigenvalue lambda is * defined as * * S(lambda) = |v**H*u| / (norm(u)*norm(v)) * * where u and v are the right and left eigenvectors of T corresponding * to lambda; v**H denotes the conjugate transpose of v, and norm(u) * denotes the Euclidean norm. These reciprocal condition numbers always * lie between zero (very badly conditioned) and one (very well * conditioned). If n = 1, S(lambda) is defined to be 1. * * An approximate error bound for a computed eigenvalue W(i) is given by * * EPS * norm(T) / S(i) * * where EPS is the machine precision. * * The reciprocal of the condition number of the right eigenvector u * corresponding to lambda is defined as follows. Suppose * * T = ( lambda c ) * ( 0 T22 ) * * Then the reciprocal condition number is * * SEP( lambda, T22 ) = sigma-min( T22 - lambda*I ) * * where sigma-min denotes the smallest singular value. We approximate * the smallest singular value by the reciprocal of an estimate of the * one-norm of the inverse of T22 - lambda*I. If n = 1, SEP(1) is * defined to be abs(T(1,1)). * * An approximate error bound for a computed right eigenvector VR(i) * is given by * * EPS * norm(T) / SEP(i) * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0+0 ) * .. * .. Local Scalars .. LOGICAL SOMCON, WANTBH, WANTS, WANTSP CHARACTER NORMIN INTEGER I, IERR, IX, J, K, KASE, KS REAL BIGNUM, EPS, EST, LNRM, RNRM, SCALE, SMLNUM, $ XNORM COMPLEX CDUM, PROD * .. * .. Local Arrays .. INTEGER ISAVE( 3 ) COMPLEX DUMMY( 1 ) * .. * .. External Functions .. LOGICAL LSAME INTEGER ICAMAX REAL SCNRM2, SLAMCH COMPLEX CDOTC EXTERNAL LSAME, ICAMAX, SCNRM2, SLAMCH, CDOTC * .. * .. External Subroutines .. EXTERNAL CLACN2, CLACPY, CLATRS, CSRSCL, CTREXC, SLABAD, $ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, MAX, REAL * .. * .. Statement Functions .. REAL CABS1 * .. * .. Statement Function definitions .. CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) ) * .. * .. Executable Statements .. * * Decode and test the input parameters * WANTBH = LSAME( JOB, 'B' ) WANTS = LSAME( JOB, 'E' ) .OR. WANTBH WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH * SOMCON = LSAME( HOWMNY, 'S' ) * * Set M to the number of eigenpairs for which condition numbers are * to be computed. * IF( SOMCON ) THEN M = 0 DO 10 J = 1, N IF( SELECT( J ) ) $ M = M + 1 10 CONTINUE ELSE M = N END IF * INFO = 0 IF( .NOT.WANTS .AND. .NOT.WANTSP ) THEN INFO = -1 ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( LDT.LT.MAX( 1, N ) ) THEN INFO = -6 ELSE IF( LDVL.LT.1 .OR. ( WANTS .AND. LDVL.LT.N ) ) THEN INFO = -8 ELSE IF( LDVR.LT.1 .OR. ( WANTS .AND. LDVR.LT.N ) ) THEN INFO = -10 ELSE IF( MM.LT.M ) THEN INFO = -13 ELSE IF( LDWORK.LT.1 .OR. ( WANTSP .AND. LDWORK.LT.N ) ) THEN INFO = -16 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CTRSNA', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * IF( N.EQ.1 ) THEN IF( SOMCON ) THEN IF( .NOT.SELECT( 1 ) ) $ RETURN END IF IF( WANTS ) $ S( 1 ) = ONE IF( WANTSP ) $ SEP( 1 ) = ABS( T( 1, 1 ) ) RETURN END IF * * Get machine constants * EPS = SLAMCH( 'P' ) SMLNUM = SLAMCH( 'S' ) / EPS BIGNUM = ONE / SMLNUM CALL SLABAD( SMLNUM, BIGNUM ) * KS = 1 DO 50 K = 1, N * IF( SOMCON ) THEN IF( .NOT.SELECT( K ) ) $ GO TO 50 END IF * IF( WANTS ) THEN * * Compute the reciprocal condition number of the k-th * eigenvalue. * PROD = CDOTC( N, VR( 1, KS ), 1, VL( 1, KS ), 1 ) RNRM = SCNRM2( N, VR( 1, KS ), 1 ) LNRM = SCNRM2( N, VL( 1, KS ), 1 ) S( KS ) = ABS( PROD ) / ( RNRM*LNRM ) * END IF * IF( WANTSP ) THEN * * Estimate the reciprocal condition number of the k-th * eigenvector. * * Copy the matrix T to the array WORK and swap the k-th * diagonal element to the (1,1) position. * CALL CLACPY( 'Full', N, N, T, LDT, WORK, LDWORK ) CALL CTREXC( 'No Q', N, WORK, LDWORK, DUMMY, 1, K, 1, IERR ) * * Form C = T22 - lambda*I in WORK(2:N,2:N). * DO 20 I = 2, N WORK( I, I ) = WORK( I, I ) - WORK( 1, 1 ) 20 CONTINUE * * Estimate a lower bound for the 1-norm of inv(C**H). The 1st * and (N+1)th columns of WORK are used to store work vectors. * SEP( KS ) = ZERO EST = ZERO KASE = 0 NORMIN = 'N' 30 CONTINUE CALL CLACN2( N-1, WORK( 1, N+1 ), WORK, EST, KASE, ISAVE ) * IF( KASE.NE.0 ) THEN IF( KASE.EQ.1 ) THEN * * Solve C**H*x = scale*b * CALL CLATRS( 'Upper', 'Conjugate transpose', $ 'Nonunit', NORMIN, N-1, WORK( 2, 2 ), $ LDWORK, WORK, SCALE, RWORK, IERR ) ELSE * * Solve C*x = scale*b * CALL CLATRS( 'Upper', 'No transpose', 'Nonunit', $ NORMIN, N-1, WORK( 2, 2 ), LDWORK, WORK, $ SCALE, RWORK, IERR ) END IF NORMIN = 'Y' IF( SCALE.NE.ONE ) THEN * * Multiply by 1/SCALE if doing so will not cause * overflow. * IX = ICAMAX( N-1, WORK, 1 ) XNORM = CABS1( WORK( IX, 1 ) ) IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO ) $ GO TO 40 CALL CSRSCL( N, SCALE, WORK, 1 ) END IF GO TO 30 END IF * SEP( KS ) = ONE / MAX( EST, SMLNUM ) END IF * 40 CONTINUE KS = KS + 1 50 CONTINUE RETURN * * End of CTRSNA * END |