1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
SUBROUTINE CUNGR2( M, N, K, A, LDA, TAU, WORK, INFO )
* * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. INTEGER INFO, K, LDA, M, N * .. * .. Array Arguments .. COMPLEX A( LDA, * ), TAU( * ), WORK( * ) * .. * * Purpose * ======= * * CUNGR2 generates an m by n complex matrix Q with orthonormal rows, * which is defined as the last m rows of a product of k elementary * reflectors of order n * * Q = H(1)**H H(2)**H . . . H(k)**H * * as returned by CGERQF. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix Q. M >= 0. * * N (input) INTEGER * The number of columns of the matrix Q. N >= M. * * K (input) INTEGER * The number of elementary reflectors whose product defines the * matrix Q. M >= K >= 0. * * A (input/output) COMPLEX array, dimension (LDA,N) * On entry, the (m-k+i)-th row must contain the vector which * defines the elementary reflector H(i), for i = 1,2,...,k, as * returned by CGERQF in the last k rows of its array argument * A. * On exit, the m-by-n matrix Q. * * LDA (input) INTEGER * The first dimension of the array A. LDA >= max(1,M). * * TAU (input) COMPLEX array, dimension (K) * TAU(i) must contain the scalar factor of the elementary * reflector H(i), as returned by CGERQF. * * WORK (workspace) COMPLEX array, dimension (M) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument has an illegal value * * ===================================================================== * * .. Parameters .. COMPLEX ONE, ZERO PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ), $ ZERO = ( 0.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER I, II, J, L * .. * .. External Subroutines .. EXTERNAL CLACGV, CLARF, CSCAL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC CONJG, MAX * .. * .. Executable Statements .. * * Test the input arguments * INFO = 0 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.M ) THEN INFO = -2 ELSE IF( K.LT.0 .OR. K.GT.M ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -5 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CUNGR2', -INFO ) RETURN END IF * * Quick return if possible * IF( M.LE.0 ) $ RETURN * IF( K.LT.M ) THEN * * Initialise rows 1:m-k to rows of the unit matrix * DO 20 J = 1, N DO 10 L = 1, M - K A( L, J ) = ZERO 10 CONTINUE IF( J.GT.N-M .AND. J.LE.N-K ) $ A( M-N+J, J ) = ONE 20 CONTINUE END IF * DO 40 I = 1, K II = M - K + I * * Apply H(i)**H to A(1:m-k+i,1:n-k+i) from the right * CALL CLACGV( N-M+II-1, A( II, 1 ), LDA ) A( II, N-M+II ) = ONE CALL CLARF( 'Right', II-1, N-M+II, A( II, 1 ), LDA, $ CONJG( TAU( I ) ), A, LDA, WORK ) CALL CSCAL( N-M+II-1, -TAU( I ), A( II, 1 ), LDA ) CALL CLACGV( N-M+II-1, A( II, 1 ), LDA ) A( II, N-M+II ) = ONE - CONJG( TAU( I ) ) * * Set A(m-k+i,n-k+i+1:n) to zero * DO 30 L = N - M + II + 1, N A( II, L ) = ZERO 30 CONTINUE 40 CONTINUE RETURN * * End of CUNGR2 * END |