1
       2
       3
       4
       5
       6
       7
       8
       9
      10
      11
      12
      13
      14
      15
      16
      17
      18
      19
      20
      21
      22
      23
      24
      25
      26
      27
      28
      29
      30
      31
      32
      33
      34
      35
      36
      37
      38
      39
      40
      41
      42
      43
      44
      45
      46
      47
      48
      49
      50
      51
      52
      53
      54
      55
      56
      57
      58
      59
      60
      61
      62
      63
      64
      65
      66
      67
      68
      69
      70
      71
      72
      73
      74
      75
      76
      77
      78
      79
      80
      81
      82
      83
      84
      85
      86
      87
      88
      89
      90
      91
      92
      93
      94
      95
      96
      97
      98
      99
     100
     101
     102
     103
     104
     105
     106
     107
     108
     109
     110
     111
     112
     113
     114
     115
     116
     117
     118
     119
     120
     121
     122
     123
     124
     125
     126
     127
     128
     129
     130
     131
     132
     133
     134
     135
     136
     137
     138
     139
     140
     141
     142
     143
     144
     145
     146
     147
     148
     149
     150
     151
     152
     153
     154
     155
     156
     157
     158
     159
     160
     161
     162
     163
     164
     165
     166
     167
     168
     169
     170
     171
     172
     173
     174
     175
     176
     177
     178
     179
     180
     181
     182
     183
     184
     185
     186
     187
     188
     189
     190
     191
     192
     193
     194
     195
     196
     197
     198
     199
     200
     201
     202
     203
     204
     205
     206
     207
     208
     209
     210
     211
     212
     213
     214
     215
     216
     217
     218
     219
     220
     221
     222
     223
     224
     225
     226
     227
     228
     229
     230
     231
     232
     233
     234
     235
     236
     237
     238
     239
     240
     241
     242
     243
     244
     245
     246
     247
     248
     249
     250
     251
     252
     253
     254
     255
     256
     257
     258
     259
     260
     261
     262
     263
     264
     265
     266
     267
     268
     269
     270
     271
     272
     273
     274
     275
     276
     277
     278
     279
     280
     281
     282
     283
     284
     285
     286
     287
     288
     289
     290
     291
      SUBROUTINE DLAGV2ALDABLDBALPHARALPHAIBETACSLSNL,
     $                   CSRSNR )
*
*  -- LAPACK auxiliary routine (version 3.2.2) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     June 2010
*
*     .. Scalar Arguments ..
      INTEGER            LDALDB
      DOUBLE PRECISION   CSLCSRSNLSNR
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   ALDA* ), ALPHAI2 ), ALPHAR2 ),
     $                   BLDB* ), BETA2 )
*     ..
*
*  Purpose
*  =======
*
*  DLAGV2 computes the Generalized Schur factorization of a real 2-by-2
*  matrix pencil (A,B) where B is upper triangular. This routine
*  computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
*  SNR such that
*
*  1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
*     types), then
*
*     [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]
*     [  0  a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]
*
*     [ b11 b12 ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]
*     [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ],
*
*  2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
*     then
*
*     [ a11 a12 ] := [  CSL  SNL ] [ a11 a12 ] [  CSR -SNR ]
*     [ a21 a22 ]    [ -SNL  CSL ] [ a21 a22 ] [  SNR  CSR ]
*
*     [ b11  0  ] := [  CSL  SNL ] [ b11 b12 ] [  CSR -SNR ]
*     [  0  b22 ]    [ -SNL  CSL ] [  0  b22 ] [  SNR  CSR ]
*
*     where b11 >= b22 > 0.
*
*
*  Arguments
*  =========
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, 2)
*          On entry, the 2 x 2 matrix A.
*          On exit, A is overwritten by the ``A-part'' of the
*          generalized Schur form.
*
*  LDA     (input) INTEGER
*          THe leading dimension of the array A.  LDA >= 2.
*
*  B       (input/output) DOUBLE PRECISION array, dimension (LDB, 2)
*          On entry, the upper triangular 2 x 2 matrix B.
*          On exit, B is overwritten by the ``B-part'' of the
*          generalized Schur form.
*
*  LDB     (input) INTEGER
*          THe leading dimension of the array B.  LDB >= 2.
*
*  ALPHAR  (output) DOUBLE PRECISION array, dimension (2)
*  ALPHAI  (output) DOUBLE PRECISION array, dimension (2)
*  BETA    (output) DOUBLE PRECISION array, dimension (2)
*          (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the
*          pencil (A,B), k=1,2, i = sqrt(-1).  Note that BETA(k) may
*          be zero.
*
*  CSL     (output) DOUBLE PRECISION
*          The cosine of the left rotation matrix.
*
*  SNL     (output) DOUBLE PRECISION
*          The sine of the left rotation matrix.
*
*  CSR     (output) DOUBLE PRECISION
*          The cosine of the right rotation matrix.
*
*  SNR     (output) DOUBLE PRECISION
*          The sine of the right rotation matrix.
*
*  Further Details
*  ===============
*
*  Based on contributions by
*     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZEROONE
      PARAMETER          ( ZERO = 0.0D+0ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      DOUBLE PRECISION   ANORMASCALEBNORMBSCALEH1H2H3QQ,
     $                   RRRSAFMINSCALE1SCALE2TULPWIWR1,
     $                   WR2
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLAG2DLARTGDLASV2DROT
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCHDLAPY2
      EXTERNAL           DLAMCHDLAPY2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABSMAX
*     ..
*     .. Executable Statements ..
*
      SAFMIN = DLAMCH'S' )
      ULP = DLAMCH'P' )
*
*     Scale A
*
      ANORM = MAXABSA11 ) )+ABSA21 ) ),
     $        ABSA12 ) )+ABSA22 ) ), SAFMIN )
      ASCALE = ONE / ANORM
      A11 ) = ASCALE*A11 )
      A12 ) = ASCALE*A12 )
      A21 ) = ASCALE*A21 )
      A22 ) = ASCALE*A22 )
*
*     Scale B
*
      BNORM = MAXABSB11 ) ), ABSB12 ) )+ABSB22 ) ),
     $        SAFMIN )
      BSCALE = ONE / BNORM
      B11 ) = BSCALE*B11 )
      B12 ) = BSCALE*B12 )
      B22 ) = BSCALE*B22 )
*
*     Check if A can be deflated
*
      IFABSA21 ) ).LE.ULP ) THEN
         CSL = ONE
         SNL = ZERO
         CSR = ONE
         SNR = ZERO
         A21 ) = ZERO
         B21 ) = ZERO
         WI = ZERO
*
*     Check if B is singular
*
      ELSE IFABSB11 ) ).LE.ULP ) THEN
         CALL DLARTGA11 ), A21 ), CSLSNLR )
         CSR = ONE
         SNR = ZERO
         CALL DROT2A11 ), LDAA21 ), LDACSLSNL )
         CALL DROT2B11 ), LDBB21 ), LDBCSLSNL )
         A21 ) = ZERO
         B11 ) = ZERO
         B21 ) = ZERO
         WI = ZERO
*
      ELSE IFABSB22 ) ).LE.ULP ) THEN
         CALL DLARTGA22 ), A21 ), CSRSNRT )
         SNR = -SNR
         CALL DROT2A11 ), 1A12 ), 1CSRSNR )
         CALL DROT2B11 ), 1B12 ), 1CSRSNR )
         CSL = ONE
         SNL = ZERO
         A21 ) = ZERO
         B21 ) = ZERO
         B22 ) = ZERO
         WI = ZERO
*
      ELSE
*
*        B is nonsingular, first compute the eigenvalues of (A,B)
*
         CALL DLAG2ALDABLDBSAFMINSCALE1SCALE2WR1WR2,
     $               WI )
*
         IFWI.EQ.ZERO ) THEN
*
*           two real eigenvalues, compute s*A-w*B
*
            H1 = SCALE1*A11 ) - WR1*B11 )
            H2 = SCALE1*A12 ) - WR1*B12 )
            H3 = SCALE1*A22 ) - WR1*B22 )
*
            RR = DLAPY2H1H2 )
            QQ = DLAPY2SCALE1*A21 ), H3 )
*
            IFRR.GT.QQ ) THEN
*
*              find right rotation matrix to zero 1,1 element of
*              (sA - wB)
*
               CALL DLARTGH2H1CSRSNRT )
*
            ELSE
*
*              find right rotation matrix to zero 2,1 element of
*              (sA - wB)
*
               CALL DLARTGH3SCALE1*A21 ), CSRSNRT )
*
            END IF
*
            SNR = -SNR
            CALL DROT2A11 ), 1A12 ), 1CSRSNR )
            CALL DROT2B11 ), 1B12 ), 1CSRSNR )
*
*           compute inf norms of A and B
*
            H1 = MAXABSA11 ) )+ABSA12 ) ),
     $           ABSA21 ) )+ABSA22 ) ) )
            H2 = MAXABSB11 ) )+ABSB12 ) ),
     $           ABSB21 ) )+ABSB22 ) ) )
*
            IF( ( SCALE1*H1 ).GE.ABSWR1 )*H2 ) THEN
*
*              find left rotation matrix Q to zero out B(2,1)
*
               CALL DLARTGB11 ), B21 ), CSLSNLR )
*
            ELSE
*
*              find left rotation matrix Q to zero out A(2,1)
*
               CALL DLARTGA11 ), A21 ), CSLSNLR )
*
            END IF
*
            CALL DROT2A11 ), LDAA21 ), LDACSLSNL )
            CALL DROT2B11 ), LDBB21 ), LDBCSLSNL )
*
            A21 ) = ZERO
            B21 ) = ZERO
*
         ELSE
*
*           a pair of complex conjugate eigenvalues
*           first compute the SVD of the matrix B
*
            CALL DLASV2B11 ), B12 ), B22 ), RTSNR,
     $                   CSRSNLCSL )
*
*           Form (A,B) := Q(A,B)Z**T where Q is left rotation matrix and
*           Z is right rotation matrix computed from DLASV2
*
            CALL DROT2A11 ), LDAA21 ), LDACSLSNL )
            CALL DROT2B11 ), LDBB21 ), LDBCSLSNL )
            CALL DROT2A11 ), 1A12 ), 1CSRSNR )
            CALL DROT2B11 ), 1B12 ), 1CSRSNR )
*
            B21 ) = ZERO
            B12 ) = ZERO
*
         END IF
*
      END IF
*
*     Unscaling
*
      A11 ) = ANORM*A11 )
      A21 ) = ANORM*A21 )
      A12 ) = ANORM*A12 )
      A22 ) = ANORM*A22 )
      B11 ) = BNORM*B11 )
      B21 ) = BNORM*B21 )
      B12 ) = BNORM*B12 )
      B22 ) = BNORM*B22 )
*
      IFWI.EQ.ZERO ) THEN
         ALPHAR1 ) = A11 )
         ALPHAR2 ) = A22 )
         ALPHAI1 ) = ZERO
         ALPHAI2 ) = ZERO
         BETA1 ) = B11 )
         BETA2 ) = B22 )
      ELSE
         ALPHAR1 ) = ANORM*WR1 / SCALE1 / BNORM
         ALPHAI1 ) = ANORM*WI / SCALE1 / BNORM
         ALPHAR2 ) = ALPHAR1 )
         ALPHAI2 ) = -ALPHAI1 )
         BETA1 ) = ONE
         BETA2 ) = ONE
      END IF
*
      RETURN
*
*     End of DLAGV2
*
      END