DLAGV2
   June 2010
Purpose
DLAGV2 computes the Generalized Schur factorization of a real 2-by-2
matrix pencil (A,B) where B is upper triangular. This routine
computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
SNR such that
1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
types), then
[ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
[ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
[ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
[ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ],
2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
then
[ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
[ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
[ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
[ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ]
where b11 >= b22 > 0.
matrix pencil (A,B) where B is upper triangular. This routine
computes orthogonal (rotation) matrices given by CSL, SNL and CSR,
SNR such that
1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0
types), then
[ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
[ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
[ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
[ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ],
2) if the pencil (A,B) has a pair of complex conjugate eigenvalues,
then
[ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ]
[ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ]
[ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ]
[ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ]
where b11 >= b22 > 0.
Arguments
| A | 
 
(input/output) DOUBLE PRECISION array, dimension (LDA, 2)
 
On entry, the 2 x 2 matrix A. 
On exit, A is overwritten by the ``A-part'' of the generalized Schur form.  | 
| LDA | 
 
(input) INTEGER
 
THe leading dimension of the array A.  LDA >= 2. 
 | 
| B | 
 
(input/output) DOUBLE PRECISION array, dimension (LDB, 2)
 
On entry, the upper triangular 2 x 2 matrix B. 
On exit, B is overwritten by the ``B-part'' of the generalized Schur form.  | 
| LDB | 
 
(input) INTEGER
 
THe leading dimension of the array B.  LDB >= 2. 
 | 
| ALPHAR | 
 
(output) DOUBLE PRECISION array, dimension (2)
 
 | 
| ALPHAI | 
 
(output) DOUBLE PRECISION array, dimension (2)
 
 | 
| BETA | 
 
(output) DOUBLE PRECISION array, dimension (2)
 
(ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the 
pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may be zero.  | 
| CSL | 
 
(output) DOUBLE PRECISION
 
The cosine of the left rotation matrix. 
 | 
| SNL | 
 
(output) DOUBLE PRECISION
 
The sine of the left rotation matrix. 
 | 
| CSR | 
 
(output) DOUBLE PRECISION
 
The cosine of the right rotation matrix. 
 | 
| SNR | 
 
(output) DOUBLE PRECISION
 
The sine of the right rotation matrix. 
 | 
Further Details
Based on contributions by
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA