1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 |
SUBROUTINE STGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
$ LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL, $ IWORK, PQ, INFO ) * * -- LAPACK auxiliary routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER TRANS INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N, $ PQ REAL RDSCAL, RDSUM, SCALE * .. * .. Array Arguments .. INTEGER IWORK( * ) REAL A( LDA, * ), B( LDB, * ), C( LDC, * ), $ D( LDD, * ), E( LDE, * ), F( LDF, * ) * .. * * Purpose * ======= * * STGSY2 solves the generalized Sylvester equation: * * A * R - L * B = scale * C (1) * D * R - L * E = scale * F, * * using Level 1 and 2 BLAS. where R and L are unknown M-by-N matrices, * (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M, * N-by-N and M-by-N, respectively, with real entries. (A, D) and (B, E) * must be in generalized Schur canonical form, i.e. A, B are upper * quasi triangular and D, E are upper triangular. The solution (R, L) * overwrites (C, F). 0 <= SCALE <= 1 is an output scaling factor * chosen to avoid overflow. * * In matrix notation solving equation (1) corresponds to solve * Z*x = scale*b, where Z is defined as * * Z = [ kron(In, A) -kron(B**T, Im) ] (2) * [ kron(In, D) -kron(E**T, Im) ], * * Ik is the identity matrix of size k and X**T is the transpose of X. * kron(X, Y) is the Kronecker product between the matrices X and Y. * In the process of solving (1), we solve a number of such systems * where Dim(In), Dim(In) = 1 or 2. * * If TRANS = 'T', solve the transposed system Z**T*y = scale*b for y, * which is equivalent to solve for R and L in * * A**T * R + D**T * L = scale * C (3) * R * B**T + L * E**T = scale * -F * * This case is used to compute an estimate of Dif[(A, D), (B, E)] = * sigma_min(Z) using reverse communicaton with SLACON. * * STGSY2 also (IJOB >= 1) contributes to the computation in STGSYL * of an upper bound on the separation between to matrix pairs. Then * the input (A, D), (B, E) are sub-pencils of the matrix pair in * STGSYL. See STGSYL for details. * * Arguments * ========= * * TRANS (input) CHARACTER*1 * = 'N', solve the generalized Sylvester equation (1). * = 'T': solve the 'transposed' system (3). * * IJOB (input) INTEGER * Specifies what kind of functionality to be performed. * = 0: solve (1) only. * = 1: A contribution from this subsystem to a Frobenius * norm-based estimate of the separation between two matrix * pairs is computed. (look ahead strategy is used). * = 2: A contribution from this subsystem to a Frobenius * norm-based estimate of the separation between two matrix * pairs is computed. (SGECON on sub-systems is used.) * Not referenced if TRANS = 'T'. * * M (input) INTEGER * On entry, M specifies the order of A and D, and the row * dimension of C, F, R and L. * * N (input) INTEGER * On entry, N specifies the order of B and E, and the column * dimension of C, F, R and L. * * A (input) REAL array, dimension (LDA, M) * On entry, A contains an upper quasi triangular matrix. * * LDA (input) INTEGER * The leading dimension of the matrix A. LDA >= max(1, M). * * B (input) REAL array, dimension (LDB, N) * On entry, B contains an upper quasi triangular matrix. * * LDB (input) INTEGER * The leading dimension of the matrix B. LDB >= max(1, N). * * C (input/output) REAL array, dimension (LDC, N) * On entry, C contains the right-hand-side of the first matrix * equation in (1). * On exit, if IJOB = 0, C has been overwritten by the * solution R. * * LDC (input) INTEGER * The leading dimension of the matrix C. LDC >= max(1, M). * * D (input) REAL array, dimension (LDD, M) * On entry, D contains an upper triangular matrix. * * LDD (input) INTEGER * The leading dimension of the matrix D. LDD >= max(1, M). * * E (input) REAL array, dimension (LDE, N) * On entry, E contains an upper triangular matrix. * * LDE (input) INTEGER * The leading dimension of the matrix E. LDE >= max(1, N). * * F (input/output) REAL array, dimension (LDF, N) * On entry, F contains the right-hand-side of the second matrix * equation in (1). * On exit, if IJOB = 0, F has been overwritten by the * solution L. * * LDF (input) INTEGER * The leading dimension of the matrix F. LDF >= max(1, M). * * SCALE (output) REAL * On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions * R and L (C and F on entry) will hold the solutions to a * slightly perturbed system but the input matrices A, B, D and * E have not been changed. If SCALE = 0, R and L will hold the * solutions to the homogeneous system with C = F = 0. Normally, * SCALE = 1. * * RDSUM (input/output) REAL * On entry, the sum of squares of computed contributions to * the Dif-estimate under computation by STGSYL, where the * scaling factor RDSCAL (see below) has been factored out. * On exit, the corresponding sum of squares updated with the * contributions from the current sub-system. * If TRANS = 'T' RDSUM is not touched. * NOTE: RDSUM only makes sense when STGSY2 is called by STGSYL. * * RDSCAL (input/output) REAL * On entry, scaling factor used to prevent overflow in RDSUM. * On exit, RDSCAL is updated w.r.t. the current contributions * in RDSUM. * If TRANS = 'T', RDSCAL is not touched. * NOTE: RDSCAL only makes sense when STGSY2 is called by * STGSYL. * * IWORK (workspace) INTEGER array, dimension (M+N+2) * * PQ (output) INTEGER * On exit, the number of subsystems (of size 2-by-2, 4-by-4 and * 8-by-8) solved by this routine. * * INFO (output) INTEGER * On exit, if INFO is set to * =0: Successful exit * <0: If INFO = -i, the i-th argument had an illegal value. * >0: The matrix pairs (A, D) and (B, E) have common or very * close eigenvalues. * * Further Details * =============== * * Based on contributions by * Bo Kagstrom and Peter Poromaa, Department of Computing Science, * Umea University, S-901 87 Umea, Sweden. * * ===================================================================== * Replaced various illegal calls to SCOPY by calls to SLASET. * Sven Hammarling, 27/5/02. * * .. Parameters .. INTEGER LDZ PARAMETER ( LDZ = 8 ) REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL NOTRAN INTEGER I, IE, IERR, II, IS, ISP1, J, JE, JJ, JS, JSP1, $ K, MB, NB, P, Q, ZDIM REAL ALPHA, SCALOC * .. * .. Local Arrays .. INTEGER IPIV( LDZ ), JPIV( LDZ ) REAL RHS( LDZ ), Z( LDZ, LDZ ) * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL SAXPY, SCOPY, SGEMM, SGEMV, SGER, SGESC2, $ SGETC2, SSCAL, SLASET, SLATDF, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Decode and test input parameters * INFO = 0 IERR = 0 NOTRAN = LSAME( TRANS, 'N' ) IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN INFO = -1 ELSE IF( NOTRAN ) THEN IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN INFO = -2 END IF END IF IF( INFO.EQ.0 ) THEN IF( M.LE.0 ) THEN INFO = -3 ELSE IF( N.LE.0 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -10 ELSE IF( LDD.LT.MAX( 1, M ) ) THEN INFO = -12 ELSE IF( LDE.LT.MAX( 1, N ) ) THEN INFO = -14 ELSE IF( LDF.LT.MAX( 1, M ) ) THEN INFO = -16 END IF END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'STGSY2', -INFO ) RETURN END IF * * Determine block structure of A * PQ = 0 P = 0 I = 1 10 CONTINUE IF( I.GT.M ) $ GO TO 20 P = P + 1 IWORK( P ) = I IF( I.EQ.M ) $ GO TO 20 IF( A( I+1, I ).NE.ZERO ) THEN I = I + 2 ELSE I = I + 1 END IF GO TO 10 20 CONTINUE IWORK( P+1 ) = M + 1 * * Determine block structure of B * Q = P + 1 J = 1 30 CONTINUE IF( J.GT.N ) $ GO TO 40 Q = Q + 1 IWORK( Q ) = J IF( J.EQ.N ) $ GO TO 40 IF( B( J+1, J ).NE.ZERO ) THEN J = J + 2 ELSE J = J + 1 END IF GO TO 30 40 CONTINUE IWORK( Q+1 ) = N + 1 PQ = P*( Q-P-1 ) * IF( NOTRAN ) THEN * * Solve (I, J) - subsystem * A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) * D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) * for I = P, P - 1, ..., 1; J = 1, 2, ..., Q * SCALE = ONE SCALOC = ONE DO 120 J = P + 2, Q JS = IWORK( J ) JSP1 = JS + 1 JE = IWORK( J+1 ) - 1 NB = JE - JS + 1 DO 110 I = P, 1, -1 * IS = IWORK( I ) ISP1 = IS + 1 IE = IWORK( I+1 ) - 1 MB = IE - IS + 1 ZDIM = MB*NB*2 * IF( ( MB.EQ.1 ) .AND. ( NB.EQ.1 ) ) THEN * * Build a 2-by-2 system Z * x = RHS * Z( 1, 1 ) = A( IS, IS ) Z( 2, 1 ) = D( IS, IS ) Z( 1, 2 ) = -B( JS, JS ) Z( 2, 2 ) = -E( JS, JS ) * * Set up right hand side(s) * RHS( 1 ) = C( IS, JS ) RHS( 2 ) = F( IS, JS ) * * Solve Z * x = RHS * CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR ) IF( IERR.GT.0 ) $ INFO = IERR * IF( IJOB.EQ.0 ) THEN CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, $ SCALOC ) IF( SCALOC.NE.ONE ) THEN DO 50 K = 1, N CALL SSCAL( M, SCALOC, C( 1, K ), 1 ) CALL SSCAL( M, SCALOC, F( 1, K ), 1 ) 50 CONTINUE SCALE = SCALE*SCALOC END IF ELSE CALL SLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM, $ RDSCAL, IPIV, JPIV ) END IF * * Unpack solution vector(s) * C( IS, JS ) = RHS( 1 ) F( IS, JS ) = RHS( 2 ) * * Substitute R(I, J) and L(I, J) into remaining * equation. * IF( I.GT.1 ) THEN ALPHA = -RHS( 1 ) CALL SAXPY( IS-1, ALPHA, A( 1, IS ), 1, C( 1, JS ), $ 1 ) CALL SAXPY( IS-1, ALPHA, D( 1, IS ), 1, F( 1, JS ), $ 1 ) END IF IF( J.LT.Q ) THEN CALL SAXPY( N-JE, RHS( 2 ), B( JS, JE+1 ), LDB, $ C( IS, JE+1 ), LDC ) CALL SAXPY( N-JE, RHS( 2 ), E( JS, JE+1 ), LDE, $ F( IS, JE+1 ), LDF ) END IF * ELSE IF( ( MB.EQ.1 ) .AND. ( NB.EQ.2 ) ) THEN * * Build a 4-by-4 system Z * x = RHS * Z( 1, 1 ) = A( IS, IS ) Z( 2, 1 ) = ZERO Z( 3, 1 ) = D( IS, IS ) Z( 4, 1 ) = ZERO * Z( 1, 2 ) = ZERO Z( 2, 2 ) = A( IS, IS ) Z( 3, 2 ) = ZERO Z( 4, 2 ) = D( IS, IS ) * Z( 1, 3 ) = -B( JS, JS ) Z( 2, 3 ) = -B( JS, JSP1 ) Z( 3, 3 ) = -E( JS, JS ) Z( 4, 3 ) = -E( JS, JSP1 ) * Z( 1, 4 ) = -B( JSP1, JS ) Z( 2, 4 ) = -B( JSP1, JSP1 ) Z( 3, 4 ) = ZERO Z( 4, 4 ) = -E( JSP1, JSP1 ) * * Set up right hand side(s) * RHS( 1 ) = C( IS, JS ) RHS( 2 ) = C( IS, JSP1 ) RHS( 3 ) = F( IS, JS ) RHS( 4 ) = F( IS, JSP1 ) * * Solve Z * x = RHS * CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR ) IF( IERR.GT.0 ) $ INFO = IERR * IF( IJOB.EQ.0 ) THEN CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, $ SCALOC ) IF( SCALOC.NE.ONE ) THEN DO 60 K = 1, N CALL SSCAL( M, SCALOC, C( 1, K ), 1 ) CALL SSCAL( M, SCALOC, F( 1, K ), 1 ) 60 CONTINUE SCALE = SCALE*SCALOC END IF ELSE CALL SLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM, $ RDSCAL, IPIV, JPIV ) END IF * * Unpack solution vector(s) * C( IS, JS ) = RHS( 1 ) C( IS, JSP1 ) = RHS( 2 ) F( IS, JS ) = RHS( 3 ) F( IS, JSP1 ) = RHS( 4 ) * * Substitute R(I, J) and L(I, J) into remaining * equation. * IF( I.GT.1 ) THEN CALL SGER( IS-1, NB, -ONE, A( 1, IS ), 1, RHS( 1 ), $ 1, C( 1, JS ), LDC ) CALL SGER( IS-1, NB, -ONE, D( 1, IS ), 1, RHS( 1 ), $ 1, F( 1, JS ), LDF ) END IF IF( J.LT.Q ) THEN CALL SAXPY( N-JE, RHS( 3 ), B( JS, JE+1 ), LDB, $ C( IS, JE+1 ), LDC ) CALL SAXPY( N-JE, RHS( 3 ), E( JS, JE+1 ), LDE, $ F( IS, JE+1 ), LDF ) CALL SAXPY( N-JE, RHS( 4 ), B( JSP1, JE+1 ), LDB, $ C( IS, JE+1 ), LDC ) CALL SAXPY( N-JE, RHS( 4 ), E( JSP1, JE+1 ), LDE, $ F( IS, JE+1 ), LDF ) END IF * ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.1 ) ) THEN * * Build a 4-by-4 system Z * x = RHS * Z( 1, 1 ) = A( IS, IS ) Z( 2, 1 ) = A( ISP1, IS ) Z( 3, 1 ) = D( IS, IS ) Z( 4, 1 ) = ZERO * Z( 1, 2 ) = A( IS, ISP1 ) Z( 2, 2 ) = A( ISP1, ISP1 ) Z( 3, 2 ) = D( IS, ISP1 ) Z( 4, 2 ) = D( ISP1, ISP1 ) * Z( 1, 3 ) = -B( JS, JS ) Z( 2, 3 ) = ZERO Z( 3, 3 ) = -E( JS, JS ) Z( 4, 3 ) = ZERO * Z( 1, 4 ) = ZERO Z( 2, 4 ) = -B( JS, JS ) Z( 3, 4 ) = ZERO Z( 4, 4 ) = -E( JS, JS ) * * Set up right hand side(s) * RHS( 1 ) = C( IS, JS ) RHS( 2 ) = C( ISP1, JS ) RHS( 3 ) = F( IS, JS ) RHS( 4 ) = F( ISP1, JS ) * * Solve Z * x = RHS * CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR ) IF( IERR.GT.0 ) $ INFO = IERR IF( IJOB.EQ.0 ) THEN CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, $ SCALOC ) IF( SCALOC.NE.ONE ) THEN DO 70 K = 1, N CALL SSCAL( M, SCALOC, C( 1, K ), 1 ) CALL SSCAL( M, SCALOC, F( 1, K ), 1 ) 70 CONTINUE SCALE = SCALE*SCALOC END IF ELSE CALL SLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM, $ RDSCAL, IPIV, JPIV ) END IF * * Unpack solution vector(s) * C( IS, JS ) = RHS( 1 ) C( ISP1, JS ) = RHS( 2 ) F( IS, JS ) = RHS( 3 ) F( ISP1, JS ) = RHS( 4 ) * * Substitute R(I, J) and L(I, J) into remaining * equation. * IF( I.GT.1 ) THEN CALL SGEMV( 'N', IS-1, MB, -ONE, A( 1, IS ), LDA, $ RHS( 1 ), 1, ONE, C( 1, JS ), 1 ) CALL SGEMV( 'N', IS-1, MB, -ONE, D( 1, IS ), LDD, $ RHS( 1 ), 1, ONE, F( 1, JS ), 1 ) END IF IF( J.LT.Q ) THEN CALL SGER( MB, N-JE, ONE, RHS( 3 ), 1, $ B( JS, JE+1 ), LDB, C( IS, JE+1 ), LDC ) CALL SGER( MB, N-JE, ONE, RHS( 3 ), 1, $ E( JS, JE+1 ), LDE, F( IS, JE+1 ), LDF ) END IF * ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.2 ) ) THEN * * Build an 8-by-8 system Z * x = RHS * CALL SLASET( 'F', LDZ, LDZ, ZERO, ZERO, Z, LDZ ) * Z( 1, 1 ) = A( IS, IS ) Z( 2, 1 ) = A( ISP1, IS ) Z( 5, 1 ) = D( IS, IS ) * Z( 1, 2 ) = A( IS, ISP1 ) Z( 2, 2 ) = A( ISP1, ISP1 ) Z( 5, 2 ) = D( IS, ISP1 ) Z( 6, 2 ) = D( ISP1, ISP1 ) * Z( 3, 3 ) = A( IS, IS ) Z( 4, 3 ) = A( ISP1, IS ) Z( 7, 3 ) = D( IS, IS ) * Z( 3, 4 ) = A( IS, ISP1 ) Z( 4, 4 ) = A( ISP1, ISP1 ) Z( 7, 4 ) = D( IS, ISP1 ) Z( 8, 4 ) = D( ISP1, ISP1 ) * Z( 1, 5 ) = -B( JS, JS ) Z( 3, 5 ) = -B( JS, JSP1 ) Z( 5, 5 ) = -E( JS, JS ) Z( 7, 5 ) = -E( JS, JSP1 ) * Z( 2, 6 ) = -B( JS, JS ) Z( 4, 6 ) = -B( JS, JSP1 ) Z( 6, 6 ) = -E( JS, JS ) Z( 8, 6 ) = -E( JS, JSP1 ) * Z( 1, 7 ) = -B( JSP1, JS ) Z( 3, 7 ) = -B( JSP1, JSP1 ) Z( 7, 7 ) = -E( JSP1, JSP1 ) * Z( 2, 8 ) = -B( JSP1, JS ) Z( 4, 8 ) = -B( JSP1, JSP1 ) Z( 8, 8 ) = -E( JSP1, JSP1 ) * * Set up right hand side(s) * K = 1 II = MB*NB + 1 DO 80 JJ = 0, NB - 1 CALL SCOPY( MB, C( IS, JS+JJ ), 1, RHS( K ), 1 ) CALL SCOPY( MB, F( IS, JS+JJ ), 1, RHS( II ), 1 ) K = K + MB II = II + MB 80 CONTINUE * * Solve Z * x = RHS * CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR ) IF( IERR.GT.0 ) $ INFO = IERR IF( IJOB.EQ.0 ) THEN CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, $ SCALOC ) IF( SCALOC.NE.ONE ) THEN DO 90 K = 1, N CALL SSCAL( M, SCALOC, C( 1, K ), 1 ) CALL SSCAL( M, SCALOC, F( 1, K ), 1 ) 90 CONTINUE SCALE = SCALE*SCALOC END IF ELSE CALL SLATDF( IJOB, ZDIM, Z, LDZ, RHS, RDSUM, $ RDSCAL, IPIV, JPIV ) END IF * * Unpack solution vector(s) * K = 1 II = MB*NB + 1 DO 100 JJ = 0, NB - 1 CALL SCOPY( MB, RHS( K ), 1, C( IS, JS+JJ ), 1 ) CALL SCOPY( MB, RHS( II ), 1, F( IS, JS+JJ ), 1 ) K = K + MB II = II + MB 100 CONTINUE * * Substitute R(I, J) and L(I, J) into remaining * equation. * IF( I.GT.1 ) THEN CALL SGEMM( 'N', 'N', IS-1, NB, MB, -ONE, $ A( 1, IS ), LDA, RHS( 1 ), MB, ONE, $ C( 1, JS ), LDC ) CALL SGEMM( 'N', 'N', IS-1, NB, MB, -ONE, $ D( 1, IS ), LDD, RHS( 1 ), MB, ONE, $ F( 1, JS ), LDF ) END IF IF( J.LT.Q ) THEN K = MB*NB + 1 CALL SGEMM( 'N', 'N', MB, N-JE, NB, ONE, RHS( K ), $ MB, B( JS, JE+1 ), LDB, ONE, $ C( IS, JE+1 ), LDC ) CALL SGEMM( 'N', 'N', MB, N-JE, NB, ONE, RHS( K ), $ MB, E( JS, JE+1 ), LDE, ONE, $ F( IS, JE+1 ), LDF ) END IF * END IF * 110 CONTINUE 120 CONTINUE ELSE * * Solve (I, J) - subsystem * A(I, I)**T * R(I, J) + D(I, I)**T * L(J, J) = C(I, J) * R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J) * for I = 1, 2, ..., P, J = Q, Q - 1, ..., 1 * SCALE = ONE SCALOC = ONE DO 200 I = 1, P * IS = IWORK( I ) ISP1 = IS + 1 IE = IWORK( I+1 ) - 1 MB = IE - IS + 1 DO 190 J = Q, P + 2, -1 * JS = IWORK( J ) JSP1 = JS + 1 JE = IWORK( J+1 ) - 1 NB = JE - JS + 1 ZDIM = MB*NB*2 IF( ( MB.EQ.1 ) .AND. ( NB.EQ.1 ) ) THEN * * Build a 2-by-2 system Z**T * x = RHS * Z( 1, 1 ) = A( IS, IS ) Z( 2, 1 ) = -B( JS, JS ) Z( 1, 2 ) = D( IS, IS ) Z( 2, 2 ) = -E( JS, JS ) * * Set up right hand side(s) * RHS( 1 ) = C( IS, JS ) RHS( 2 ) = F( IS, JS ) * * Solve Z**T * x = RHS * CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR ) IF( IERR.GT.0 ) $ INFO = IERR * CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC ) IF( SCALOC.NE.ONE ) THEN DO 130 K = 1, N CALL SSCAL( M, SCALOC, C( 1, K ), 1 ) CALL SSCAL( M, SCALOC, F( 1, K ), 1 ) 130 CONTINUE SCALE = SCALE*SCALOC END IF * * Unpack solution vector(s) * C( IS, JS ) = RHS( 1 ) F( IS, JS ) = RHS( 2 ) * * Substitute R(I, J) and L(I, J) into remaining * equation. * IF( J.GT.P+2 ) THEN ALPHA = RHS( 1 ) CALL SAXPY( JS-1, ALPHA, B( 1, JS ), 1, F( IS, 1 ), $ LDF ) ALPHA = RHS( 2 ) CALL SAXPY( JS-1, ALPHA, E( 1, JS ), 1, F( IS, 1 ), $ LDF ) END IF IF( I.LT.P ) THEN ALPHA = -RHS( 1 ) CALL SAXPY( M-IE, ALPHA, A( IS, IE+1 ), LDA, $ C( IE+1, JS ), 1 ) ALPHA = -RHS( 2 ) CALL SAXPY( M-IE, ALPHA, D( IS, IE+1 ), LDD, $ C( IE+1, JS ), 1 ) END IF * ELSE IF( ( MB.EQ.1 ) .AND. ( NB.EQ.2 ) ) THEN * * Build a 4-by-4 system Z**T * x = RHS * Z( 1, 1 ) = A( IS, IS ) Z( 2, 1 ) = ZERO Z( 3, 1 ) = -B( JS, JS ) Z( 4, 1 ) = -B( JSP1, JS ) * Z( 1, 2 ) = ZERO Z( 2, 2 ) = A( IS, IS ) Z( 3, 2 ) = -B( JS, JSP1 ) Z( 4, 2 ) = -B( JSP1, JSP1 ) * Z( 1, 3 ) = D( IS, IS ) Z( 2, 3 ) = ZERO Z( 3, 3 ) = -E( JS, JS ) Z( 4, 3 ) = ZERO * Z( 1, 4 ) = ZERO Z( 2, 4 ) = D( IS, IS ) Z( 3, 4 ) = -E( JS, JSP1 ) Z( 4, 4 ) = -E( JSP1, JSP1 ) * * Set up right hand side(s) * RHS( 1 ) = C( IS, JS ) RHS( 2 ) = C( IS, JSP1 ) RHS( 3 ) = F( IS, JS ) RHS( 4 ) = F( IS, JSP1 ) * * Solve Z**T * x = RHS * CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR ) IF( IERR.GT.0 ) $ INFO = IERR CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC ) IF( SCALOC.NE.ONE ) THEN DO 140 K = 1, N CALL SSCAL( M, SCALOC, C( 1, K ), 1 ) CALL SSCAL( M, SCALOC, F( 1, K ), 1 ) 140 CONTINUE SCALE = SCALE*SCALOC END IF * * Unpack solution vector(s) * C( IS, JS ) = RHS( 1 ) C( IS, JSP1 ) = RHS( 2 ) F( IS, JS ) = RHS( 3 ) F( IS, JSP1 ) = RHS( 4 ) * * Substitute R(I, J) and L(I, J) into remaining * equation. * IF( J.GT.P+2 ) THEN CALL SAXPY( JS-1, RHS( 1 ), B( 1, JS ), 1, $ F( IS, 1 ), LDF ) CALL SAXPY( JS-1, RHS( 2 ), B( 1, JSP1 ), 1, $ F( IS, 1 ), LDF ) CALL SAXPY( JS-1, RHS( 3 ), E( 1, JS ), 1, $ F( IS, 1 ), LDF ) CALL SAXPY( JS-1, RHS( 4 ), E( 1, JSP1 ), 1, $ F( IS, 1 ), LDF ) END IF IF( I.LT.P ) THEN CALL SGER( M-IE, NB, -ONE, A( IS, IE+1 ), LDA, $ RHS( 1 ), 1, C( IE+1, JS ), LDC ) CALL SGER( M-IE, NB, -ONE, D( IS, IE+1 ), LDD, $ RHS( 3 ), 1, C( IE+1, JS ), LDC ) END IF * ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.1 ) ) THEN * * Build a 4-by-4 system Z**T * x = RHS * Z( 1, 1 ) = A( IS, IS ) Z( 2, 1 ) = A( IS, ISP1 ) Z( 3, 1 ) = -B( JS, JS ) Z( 4, 1 ) = ZERO * Z( 1, 2 ) = A( ISP1, IS ) Z( 2, 2 ) = A( ISP1, ISP1 ) Z( 3, 2 ) = ZERO Z( 4, 2 ) = -B( JS, JS ) * Z( 1, 3 ) = D( IS, IS ) Z( 2, 3 ) = D( IS, ISP1 ) Z( 3, 3 ) = -E( JS, JS ) Z( 4, 3 ) = ZERO * Z( 1, 4 ) = ZERO Z( 2, 4 ) = D( ISP1, ISP1 ) Z( 3, 4 ) = ZERO Z( 4, 4 ) = -E( JS, JS ) * * Set up right hand side(s) * RHS( 1 ) = C( IS, JS ) RHS( 2 ) = C( ISP1, JS ) RHS( 3 ) = F( IS, JS ) RHS( 4 ) = F( ISP1, JS ) * * Solve Z**T * x = RHS * CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR ) IF( IERR.GT.0 ) $ INFO = IERR * CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC ) IF( SCALOC.NE.ONE ) THEN DO 150 K = 1, N CALL SSCAL( M, SCALOC, C( 1, K ), 1 ) CALL SSCAL( M, SCALOC, F( 1, K ), 1 ) 150 CONTINUE SCALE = SCALE*SCALOC END IF * * Unpack solution vector(s) * C( IS, JS ) = RHS( 1 ) C( ISP1, JS ) = RHS( 2 ) F( IS, JS ) = RHS( 3 ) F( ISP1, JS ) = RHS( 4 ) * * Substitute R(I, J) and L(I, J) into remaining * equation. * IF( J.GT.P+2 ) THEN CALL SGER( MB, JS-1, ONE, RHS( 1 ), 1, B( 1, JS ), $ 1, F( IS, 1 ), LDF ) CALL SGER( MB, JS-1, ONE, RHS( 3 ), 1, E( 1, JS ), $ 1, F( IS, 1 ), LDF ) END IF IF( I.LT.P ) THEN CALL SGEMV( 'T', MB, M-IE, -ONE, A( IS, IE+1 ), $ LDA, RHS( 1 ), 1, ONE, C( IE+1, JS ), $ 1 ) CALL SGEMV( 'T', MB, M-IE, -ONE, D( IS, IE+1 ), $ LDD, RHS( 3 ), 1, ONE, C( IE+1, JS ), $ 1 ) END IF * ELSE IF( ( MB.EQ.2 ) .AND. ( NB.EQ.2 ) ) THEN * * Build an 8-by-8 system Z**T * x = RHS * CALL SLASET( 'F', LDZ, LDZ, ZERO, ZERO, Z, LDZ ) * Z( 1, 1 ) = A( IS, IS ) Z( 2, 1 ) = A( IS, ISP1 ) Z( 5, 1 ) = -B( JS, JS ) Z( 7, 1 ) = -B( JSP1, JS ) * Z( 1, 2 ) = A( ISP1, IS ) Z( 2, 2 ) = A( ISP1, ISP1 ) Z( 6, 2 ) = -B( JS, JS ) Z( 8, 2 ) = -B( JSP1, JS ) * Z( 3, 3 ) = A( IS, IS ) Z( 4, 3 ) = A( IS, ISP1 ) Z( 5, 3 ) = -B( JS, JSP1 ) Z( 7, 3 ) = -B( JSP1, JSP1 ) * Z( 3, 4 ) = A( ISP1, IS ) Z( 4, 4 ) = A( ISP1, ISP1 ) Z( 6, 4 ) = -B( JS, JSP1 ) Z( 8, 4 ) = -B( JSP1, JSP1 ) * Z( 1, 5 ) = D( IS, IS ) Z( 2, 5 ) = D( IS, ISP1 ) Z( 5, 5 ) = -E( JS, JS ) * Z( 2, 6 ) = D( ISP1, ISP1 ) Z( 6, 6 ) = -E( JS, JS ) * Z( 3, 7 ) = D( IS, IS ) Z( 4, 7 ) = D( IS, ISP1 ) Z( 5, 7 ) = -E( JS, JSP1 ) Z( 7, 7 ) = -E( JSP1, JSP1 ) * Z( 4, 8 ) = D( ISP1, ISP1 ) Z( 6, 8 ) = -E( JS, JSP1 ) Z( 8, 8 ) = -E( JSP1, JSP1 ) * * Set up right hand side(s) * K = 1 II = MB*NB + 1 DO 160 JJ = 0, NB - 1 CALL SCOPY( MB, C( IS, JS+JJ ), 1, RHS( K ), 1 ) CALL SCOPY( MB, F( IS, JS+JJ ), 1, RHS( II ), 1 ) K = K + MB II = II + MB 160 CONTINUE * * * Solve Z**T * x = RHS * CALL SGETC2( ZDIM, Z, LDZ, IPIV, JPIV, IERR ) IF( IERR.GT.0 ) $ INFO = IERR * CALL SGESC2( ZDIM, Z, LDZ, RHS, IPIV, JPIV, SCALOC ) IF( SCALOC.NE.ONE ) THEN DO 170 K = 1, N CALL SSCAL( M, SCALOC, C( 1, K ), 1 ) CALL SSCAL( M, SCALOC, F( 1, K ), 1 ) 170 CONTINUE SCALE = SCALE*SCALOC END IF * * Unpack solution vector(s) * K = 1 II = MB*NB + 1 DO 180 JJ = 0, NB - 1 CALL SCOPY( MB, RHS( K ), 1, C( IS, JS+JJ ), 1 ) CALL SCOPY( MB, RHS( II ), 1, F( IS, JS+JJ ), 1 ) K = K + MB II = II + MB 180 CONTINUE * * Substitute R(I, J) and L(I, J) into remaining * equation. * IF( J.GT.P+2 ) THEN CALL SGEMM( 'N', 'T', MB, JS-1, NB, ONE, $ C( IS, JS ), LDC, B( 1, JS ), LDB, ONE, $ F( IS, 1 ), LDF ) CALL SGEMM( 'N', 'T', MB, JS-1, NB, ONE, $ F( IS, JS ), LDF, E( 1, JS ), LDE, ONE, $ F( IS, 1 ), LDF ) END IF IF( I.LT.P ) THEN CALL SGEMM( 'T', 'N', M-IE, NB, MB, -ONE, $ A( IS, IE+1 ), LDA, C( IS, JS ), LDC, $ ONE, C( IE+1, JS ), LDC ) CALL SGEMM( 'T', 'N', M-IE, NB, MB, -ONE, $ D( IS, IE+1 ), LDD, F( IS, JS ), LDF, $ ONE, C( IE+1, JS ), LDC ) END IF * END IF * 190 CONTINUE 200 CONTINUE * END IF RETURN * * End of STGSY2 * END |