1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
SUBROUTINE ZGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
$ TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, $ IWORK, RWORK, TAU, WORK, INFO ) * * -- LAPACK routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER JOBQ, JOBU, JOBV INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P DOUBLE PRECISION TOLA, TOLB * .. * .. Array Arguments .. INTEGER IWORK( * ) DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( LDA, * ), B( LDB, * ), Q( LDQ, * ), $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * ) * .. * * Purpose * ======= * * ZGGSVP computes unitary matrices U, V and Q such that * * N-K-L K L * U**H*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0; * L ( 0 0 A23 ) * M-K-L ( 0 0 0 ) * * N-K-L K L * = K ( 0 A12 A13 ) if M-K-L < 0; * M-K ( 0 0 A23 ) * * N-K-L K L * V**H*B*Q = L ( 0 0 B13 ) * P-L ( 0 0 0 ) * * where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular * upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0, * otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective * numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H. * * This decomposition is the preprocessing step for computing the * Generalized Singular Value Decomposition (GSVD), see subroutine * ZGGSVD. * * Arguments * ========= * * JOBU (input) CHARACTER*1 * = 'U': Unitary matrix U is computed; * = 'N': U is not computed. * * JOBV (input) CHARACTER*1 * = 'V': Unitary matrix V is computed; * = 'N': V is not computed. * * JOBQ (input) CHARACTER*1 * = 'Q': Unitary matrix Q is computed; * = 'N': Q is not computed. * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * P (input) INTEGER * The number of rows of the matrix B. P >= 0. * * N (input) INTEGER * The number of columns of the matrices A and B. N >= 0. * * A (input/output) COMPLEX*16 array, dimension (LDA,N) * On entry, the M-by-N matrix A. * On exit, A contains the triangular (or trapezoidal) matrix * described in the Purpose section. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * B (input/output) COMPLEX*16 array, dimension (LDB,N) * On entry, the P-by-N matrix B. * On exit, B contains the triangular matrix described in * the Purpose section. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,P). * * TOLA (input) DOUBLE PRECISION * TOLB (input) DOUBLE PRECISION * TOLA and TOLB are the thresholds to determine the effective * numerical rank of matrix B and a subblock of A. Generally, * they are set to * TOLA = MAX(M,N)*norm(A)*MAZHEPS, * TOLB = MAX(P,N)*norm(B)*MAZHEPS. * The size of TOLA and TOLB may affect the size of backward * errors of the decomposition. * * K (output) INTEGER * L (output) INTEGER * On exit, K and L specify the dimension of the subblocks * described in Purpose section. * K + L = effective numerical rank of (A**H,B**H)**H. * * U (output) COMPLEX*16 array, dimension (LDU,M) * If JOBU = 'U', U contains the unitary matrix U. * If JOBU = 'N', U is not referenced. * * LDU (input) INTEGER * The leading dimension of the array U. LDU >= max(1,M) if * JOBU = 'U'; LDU >= 1 otherwise. * * V (output) COMPLEX*16 array, dimension (LDV,P) * If JOBV = 'V', V contains the unitary matrix V. * If JOBV = 'N', V is not referenced. * * LDV (input) INTEGER * The leading dimension of the array V. LDV >= max(1,P) if * JOBV = 'V'; LDV >= 1 otherwise. * * Q (output) COMPLEX*16 array, dimension (LDQ,N) * If JOBQ = 'Q', Q contains the unitary matrix Q. * If JOBQ = 'N', Q is not referenced. * * LDQ (input) INTEGER * The leading dimension of the array Q. LDQ >= max(1,N) if * JOBQ = 'Q'; LDQ >= 1 otherwise. * * IWORK (workspace) INTEGER array, dimension (N) * * RWORK (workspace) DOUBLE PRECISION array, dimension (2*N) * * TAU (workspace) COMPLEX*16 array, dimension (N) * * WORK (workspace) COMPLEX*16 array, dimension (max(3*N,M,P)) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value. * * Further Details * =============== * * The subroutine uses LAPACK subroutine ZGEQPF for the QR factorization * with column pivoting to detect the effective numerical rank of the * a matrix. It may be replaced by a better rank determination strategy. * * ===================================================================== * * .. Parameters .. COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. LOGICAL FORWRD, WANTQ, WANTU, WANTV INTEGER I, J COMPLEX*16 T * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA, ZGEQPF, ZGEQR2, ZGERQ2, ZLACPY, ZLAPMT, $ ZLASET, ZUNG2R, ZUNM2R, ZUNMR2 * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, DIMAG, MAX, MIN * .. * .. Statement Functions .. DOUBLE PRECISION CABS1 * .. * .. Statement Function definitions .. CABS1( T ) = ABS( DBLE( T ) ) + ABS( DIMAG( T ) ) * .. * .. Executable Statements .. * * Test the input parameters * WANTU = LSAME( JOBU, 'U' ) WANTV = LSAME( JOBV, 'V' ) WANTQ = LSAME( JOBQ, 'Q' ) FORWRD = .TRUE. * INFO = 0 IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN INFO = -1 ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN INFO = -2 ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN INFO = -3 ELSE IF( M.LT.0 ) THEN INFO = -4 ELSE IF( P.LT.0 ) THEN INFO = -5 ELSE IF( N.LT.0 ) THEN INFO = -6 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -8 ELSE IF( LDB.LT.MAX( 1, P ) ) THEN INFO = -10 ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN INFO = -16 ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN INFO = -18 ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN INFO = -20 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGGSVP', -INFO ) RETURN END IF * * QR with column pivoting of B: B*P = V*( S11 S12 ) * ( 0 0 ) * DO 10 I = 1, N IWORK( I ) = 0 10 CONTINUE CALL ZGEQPF( P, N, B, LDB, IWORK, TAU, WORK, RWORK, INFO ) * * Update A := A*P * CALL ZLAPMT( FORWRD, M, N, A, LDA, IWORK ) * * Determine the effective rank of matrix B. * L = 0 DO 20 I = 1, MIN( P, N ) IF( CABS1( B( I, I ) ).GT.TOLB ) $ L = L + 1 20 CONTINUE * IF( WANTV ) THEN * * Copy the details of V, and form V. * CALL ZLASET( 'Full', P, P, CZERO, CZERO, V, LDV ) IF( P.GT.1 ) $ CALL ZLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ), $ LDV ) CALL ZUNG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO ) END IF * * Clean up B * DO 40 J = 1, L - 1 DO 30 I = J + 1, L B( I, J ) = CZERO 30 CONTINUE 40 CONTINUE IF( P.GT.L ) $ CALL ZLASET( 'Full', P-L, N, CZERO, CZERO, B( L+1, 1 ), LDB ) * IF( WANTQ ) THEN * * Set Q = I and Update Q := Q*P * CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDQ ) CALL ZLAPMT( FORWRD, N, N, Q, LDQ, IWORK ) END IF * IF( P.GE.L .AND. N.NE.L ) THEN * * RQ factorization of ( S11 S12 ) = ( 0 S12 )*Z * CALL ZGERQ2( L, N, B, LDB, TAU, WORK, INFO ) * * Update A := A*Z**H * CALL ZUNMR2( 'Right', 'Conjugate transpose', M, N, L, B, LDB, $ TAU, A, LDA, WORK, INFO ) IF( WANTQ ) THEN * * Update Q := Q*Z**H * CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N, L, B, $ LDB, TAU, Q, LDQ, WORK, INFO ) END IF * * Clean up B * CALL ZLASET( 'Full', L, N-L, CZERO, CZERO, B, LDB ) DO 60 J = N - L + 1, N DO 50 I = J - N + L + 1, L B( I, J ) = CZERO 50 CONTINUE 60 CONTINUE * END IF * * Let N-L L * A = ( A11 A12 ) M, * * then the following does the complete QR decomposition of A11: * * A11 = U*( 0 T12 )*P1**H * ( 0 0 ) * DO 70 I = 1, N - L IWORK( I ) = 0 70 CONTINUE CALL ZGEQPF( M, N-L, A, LDA, IWORK, TAU, WORK, RWORK, INFO ) * * Determine the effective rank of A11 * K = 0 DO 80 I = 1, MIN( M, N-L ) IF( CABS1( A( I, I ) ).GT.TOLA ) $ K = K + 1 80 CONTINUE * * Update A12 := U**H*A12, where A12 = A( 1:M, N-L+1:N ) * CALL ZUNM2R( 'Left', 'Conjugate transpose', M, L, MIN( M, N-L ), $ A, LDA, TAU, A( 1, N-L+1 ), LDA, WORK, INFO ) * IF( WANTU ) THEN * * Copy the details of U, and form U * CALL ZLASET( 'Full', M, M, CZERO, CZERO, U, LDU ) IF( M.GT.1 ) $ CALL ZLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ), $ LDU ) CALL ZUNG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO ) END IF * IF( WANTQ ) THEN * * Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1 * CALL ZLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK ) END IF * * Clean up A: set the strictly lower triangular part of * A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0. * DO 100 J = 1, K - 1 DO 90 I = J + 1, K A( I, J ) = CZERO 90 CONTINUE 100 CONTINUE IF( M.GT.K ) $ CALL ZLASET( 'Full', M-K, N-L, CZERO, CZERO, A( K+1, 1 ), LDA ) * IF( N-L.GT.K ) THEN * * RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1 * CALL ZGERQ2( K, N-L, A, LDA, TAU, WORK, INFO ) * IF( WANTQ ) THEN * * Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**H * CALL ZUNMR2( 'Right', 'Conjugate transpose', N, N-L, K, A, $ LDA, TAU, Q, LDQ, WORK, INFO ) END IF * * Clean up A * CALL ZLASET( 'Full', K, N-L-K, CZERO, CZERO, A, LDA ) DO 120 J = N - L - K + 1, N - L DO 110 I = J - N + L + K + 1, K A( I, J ) = CZERO 110 CONTINUE 120 CONTINUE * END IF * IF( M.GT.K ) THEN * * QR factorization of A( K+1:M,N-L+1:N ) * CALL ZGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO ) * IF( WANTU ) THEN * * Update U(:,K+1:M) := U(:,K+1:M)*U1 * CALL ZUNM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ), $ A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU, $ WORK, INFO ) END IF * * Clean up * DO 140 J = N - L + 1, N DO 130 I = J - N + K + L + 1, M A( I, J ) = CZERO 130 CONTINUE 140 CONTINUE * END IF * RETURN * * End of ZGGSVP * END |