1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
SUBROUTINE ZTGSY2( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D,
$ LDD, E, LDE, F, LDF, SCALE, RDSUM, RDSCAL, $ INFO ) * * -- LAPACK auxiliary routine (version 3.3.1) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * -- April 2011 -- * * .. Scalar Arguments .. CHARACTER TRANS INTEGER IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, M, N DOUBLE PRECISION RDSCAL, RDSUM, SCALE * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ), B( LDB, * ), C( LDC, * ), $ D( LDD, * ), E( LDE, * ), F( LDF, * ) * .. * * Purpose * ======= * * ZTGSY2 solves the generalized Sylvester equation * * A * R - L * B = scale * C (1) * D * R - L * E = scale * F * * using Level 1 and 2 BLAS, where R and L are unknown M-by-N matrices, * (A, D), (B, E) and (C, F) are given matrix pairs of size M-by-M, * N-by-N and M-by-N, respectively. A, B, D and E are upper triangular * (i.e., (A,D) and (B,E) in generalized Schur form). * * The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output * scaling factor chosen to avoid overflow. * * In matrix notation solving equation (1) corresponds to solve * Zx = scale * b, where Z is defined as * * Z = [ kron(In, A) -kron(B**H, Im) ] (2) * [ kron(In, D) -kron(E**H, Im) ], * * Ik is the identity matrix of size k and X**H is the conjuguate transpose of X. * kron(X, Y) is the Kronecker product between the matrices X and Y. * * If TRANS = 'C', y in the conjugate transposed system Z**H*y = scale*b * is solved for, which is equivalent to solve for R and L in * * A**H * R + D**H * L = scale * C (3) * R * B**H + L * E**H = scale * -F * * This case is used to compute an estimate of Dif[(A, D), (B, E)] = * = sigma_min(Z) using reverse communicaton with ZLACON. * * ZTGSY2 also (IJOB >= 1) contributes to the computation in ZTGSYL * of an upper bound on the separation between to matrix pairs. Then * the input (A, D), (B, E) are sub-pencils of two matrix pairs in * ZTGSYL. * * Arguments * ========= * * TRANS (input) CHARACTER*1 * = 'N', solve the generalized Sylvester equation (1). * = 'T': solve the 'transposed' system (3). * * IJOB (input) INTEGER * Specifies what kind of functionality to be performed. * =0: solve (1) only. * =1: A contribution from this subsystem to a Frobenius * norm-based estimate of the separation between two matrix * pairs is computed. (look ahead strategy is used). * =2: A contribution from this subsystem to a Frobenius * norm-based estimate of the separation between two matrix * pairs is computed. (DGECON on sub-systems is used.) * Not referenced if TRANS = 'T'. * * M (input) INTEGER * On entry, M specifies the order of A and D, and the row * dimension of C, F, R and L. * * N (input) INTEGER * On entry, N specifies the order of B and E, and the column * dimension of C, F, R and L. * * A (input) COMPLEX*16 array, dimension (LDA, M) * On entry, A contains an upper triangular matrix. * * LDA (input) INTEGER * The leading dimension of the matrix A. LDA >= max(1, M). * * B (input) COMPLEX*16 array, dimension (LDB, N) * On entry, B contains an upper triangular matrix. * * LDB (input) INTEGER * The leading dimension of the matrix B. LDB >= max(1, N). * * C (input/output) COMPLEX*16 array, dimension (LDC, N) * On entry, C contains the right-hand-side of the first matrix * equation in (1). * On exit, if IJOB = 0, C has been overwritten by the solution * R. * * LDC (input) INTEGER * The leading dimension of the matrix C. LDC >= max(1, M). * * D (input) COMPLEX*16 array, dimension (LDD, M) * On entry, D contains an upper triangular matrix. * * LDD (input) INTEGER * The leading dimension of the matrix D. LDD >= max(1, M). * * E (input) COMPLEX*16 array, dimension (LDE, N) * On entry, E contains an upper triangular matrix. * * LDE (input) INTEGER * The leading dimension of the matrix E. LDE >= max(1, N). * * F (input/output) COMPLEX*16 array, dimension (LDF, N) * On entry, F contains the right-hand-side of the second matrix * equation in (1). * On exit, if IJOB = 0, F has been overwritten by the solution * L. * * LDF (input) INTEGER * The leading dimension of the matrix F. LDF >= max(1, M). * * SCALE (output) DOUBLE PRECISION * On exit, 0 <= SCALE <= 1. If 0 < SCALE < 1, the solutions * R and L (C and F on entry) will hold the solutions to a * slightly perturbed system but the input matrices A, B, D and * E have not been changed. If SCALE = 0, R and L will hold the * solutions to the homogeneous system with C = F = 0. * Normally, SCALE = 1. * * RDSUM (input/output) DOUBLE PRECISION * On entry, the sum of squares of computed contributions to * the Dif-estimate under computation by ZTGSYL, where the * scaling factor RDSCAL (see below) has been factored out. * On exit, the corresponding sum of squares updated with the * contributions from the current sub-system. * If TRANS = 'T' RDSUM is not touched. * NOTE: RDSUM only makes sense when ZTGSY2 is called by * ZTGSYL. * * RDSCAL (input/output) DOUBLE PRECISION * On entry, scaling factor used to prevent overflow in RDSUM. * On exit, RDSCAL is updated w.r.t. the current contributions * in RDSUM. * If TRANS = 'T', RDSCAL is not touched. * NOTE: RDSCAL only makes sense when ZTGSY2 is called by * ZTGSYL. * * INFO (output) INTEGER * On exit, if INFO is set to * =0: Successful exit * <0: If INFO = -i, input argument number i is illegal. * >0: The matrix pairs (A, D) and (B, E) have common or very * close eigenvalues. * * Further Details * =============== * * Based on contributions by * Bo Kagstrom and Peter Poromaa, Department of Computing Science, * Umea University, S-901 87 Umea, Sweden. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE INTEGER LDZ PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, LDZ = 2 ) * .. * .. Local Scalars .. LOGICAL NOTRAN INTEGER I, IERR, J, K DOUBLE PRECISION SCALOC COMPLEX*16 ALPHA * .. * .. Local Arrays .. INTEGER IPIV( LDZ ), JPIV( LDZ ) COMPLEX*16 RHS( LDZ ), Z( LDZ, LDZ ) * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL XERBLA, ZAXPY, ZGESC2, ZGETC2, ZLATDF, ZSCAL * .. * .. Intrinsic Functions .. INTRINSIC DCMPLX, DCONJG, MAX * .. * .. Executable Statements .. * * Decode and test input parameters * INFO = 0 IERR = 0 NOTRAN = LSAME( TRANS, 'N' ) IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN INFO = -1 ELSE IF( NOTRAN ) THEN IF( ( IJOB.LT.0 ) .OR. ( IJOB.GT.2 ) ) THEN INFO = -2 END IF END IF IF( INFO.EQ.0 ) THEN IF( M.LE.0 ) THEN INFO = -3 ELSE IF( N.LE.0 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 ELSE IF( LDC.LT.MAX( 1, M ) ) THEN INFO = -10 ELSE IF( LDD.LT.MAX( 1, M ) ) THEN INFO = -12 ELSE IF( LDE.LT.MAX( 1, N ) ) THEN INFO = -14 ELSE IF( LDF.LT.MAX( 1, M ) ) THEN INFO = -16 END IF END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZTGSY2', -INFO ) RETURN END IF * IF( NOTRAN ) THEN * * Solve (I, J) - system * A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) * D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) * for I = M, M - 1, ..., 1; J = 1, 2, ..., N * SCALE = ONE SCALOC = ONE DO 30 J = 1, N DO 20 I = M, 1, -1 * * Build 2 by 2 system * Z( 1, 1 ) = A( I, I ) Z( 2, 1 ) = D( I, I ) Z( 1, 2 ) = -B( J, J ) Z( 2, 2 ) = -E( J, J ) * * Set up right hand side(s) * RHS( 1 ) = C( I, J ) RHS( 2 ) = F( I, J ) * * Solve Z * x = RHS * CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR ) IF( IERR.GT.0 ) $ INFO = IERR IF( IJOB.EQ.0 ) THEN CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC ) IF( SCALOC.NE.ONE ) THEN DO 10 K = 1, N CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), $ C( 1, K ), 1 ) CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), $ F( 1, K ), 1 ) 10 CONTINUE SCALE = SCALE*SCALOC END IF ELSE CALL ZLATDF( IJOB, LDZ, Z, LDZ, RHS, RDSUM, RDSCAL, $ IPIV, JPIV ) END IF * * Unpack solution vector(s) * C( I, J ) = RHS( 1 ) F( I, J ) = RHS( 2 ) * * Substitute R(I, J) and L(I, J) into remaining equation. * IF( I.GT.1 ) THEN ALPHA = -RHS( 1 ) CALL ZAXPY( I-1, ALPHA, A( 1, I ), 1, C( 1, J ), 1 ) CALL ZAXPY( I-1, ALPHA, D( 1, I ), 1, F( 1, J ), 1 ) END IF IF( J.LT.N ) THEN CALL ZAXPY( N-J, RHS( 2 ), B( J, J+1 ), LDB, $ C( I, J+1 ), LDC ) CALL ZAXPY( N-J, RHS( 2 ), E( J, J+1 ), LDE, $ F( I, J+1 ), LDF ) END IF * 20 CONTINUE 30 CONTINUE ELSE * * Solve transposed (I, J) - system: * A(I, I)**H * R(I, J) + D(I, I)**H * L(J, J) = C(I, J) * R(I, I) * B(J, J) + L(I, J) * E(J, J) = -F(I, J) * for I = 1, 2, ..., M, J = N, N - 1, ..., 1 * SCALE = ONE SCALOC = ONE DO 80 I = 1, M DO 70 J = N, 1, -1 * * Build 2 by 2 system Z**H * Z( 1, 1 ) = DCONJG( A( I, I ) ) Z( 2, 1 ) = -DCONJG( B( J, J ) ) Z( 1, 2 ) = DCONJG( D( I, I ) ) Z( 2, 2 ) = -DCONJG( E( J, J ) ) * * * Set up right hand side(s) * RHS( 1 ) = C( I, J ) RHS( 2 ) = F( I, J ) * * Solve Z**H * x = RHS * CALL ZGETC2( LDZ, Z, LDZ, IPIV, JPIV, IERR ) IF( IERR.GT.0 ) $ INFO = IERR CALL ZGESC2( LDZ, Z, LDZ, RHS, IPIV, JPIV, SCALOC ) IF( SCALOC.NE.ONE ) THEN DO 40 K = 1, N CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), C( 1, K ), $ 1 ) CALL ZSCAL( M, DCMPLX( SCALOC, ZERO ), F( 1, K ), $ 1 ) 40 CONTINUE SCALE = SCALE*SCALOC END IF * * Unpack solution vector(s) * C( I, J ) = RHS( 1 ) F( I, J ) = RHS( 2 ) * * Substitute R(I, J) and L(I, J) into remaining equation. * DO 50 K = 1, J - 1 F( I, K ) = F( I, K ) + RHS( 1 )*DCONJG( B( K, J ) ) + $ RHS( 2 )*DCONJG( E( K, J ) ) 50 CONTINUE DO 60 K = I + 1, M C( K, J ) = C( K, J ) - DCONJG( A( I, K ) )*RHS( 1 ) - $ DCONJG( D( I, K ) )*RHS( 2 ) 60 CONTINUE * 70 CONTINUE 80 CONTINUE END IF RETURN * * End of ZTGSY2 * END |