1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
SUBROUTINE CSGT01( ITYPE, UPLO, N, M, A, LDA, B, LDB, Z, LDZ, D,
$ WORK, RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * modified August 1997, a new parameter M is added to the calling * sequence. * * .. Scalar Arguments .. CHARACTER UPLO INTEGER ITYPE, LDA, LDB, LDZ, M, N * .. * .. Array Arguments .. REAL D( * ), RESULT( * ), RWORK( * ) COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ), $ Z( LDZ, * ) * .. * * Purpose * ======= * * CSGT01 checks a decomposition of the form * * A Z = B Z D or * A B Z = Z D or * B A Z = Z D * * where A is a Hermitian matrix, B is Hermitian positive definite, * Z is unitary, and D is diagonal. * * One of the following test ratios is computed: * * ITYPE = 1: RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp ) * * ITYPE = 2: RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp ) * * ITYPE = 3: RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp ) * * Arguments * ========= * * ITYPE (input) INTEGER * The form of the Hermitian generalized eigenproblem. * = 1: A*z = (lambda)*B*z * = 2: A*B*z = (lambda)*z * = 3: B*A*z = (lambda)*z * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * Hermitian matrices A and B is stored. * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The order of the matrix A. N >= 0. * * M (input) INTEGER * The number of eigenvalues found. M >= 0. * * A (input) COMPLEX array, dimension (LDA, N) * The original Hermitian matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * B (input) COMPLEX array, dimension (LDB, N) * The original Hermitian positive definite matrix B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * Z (input) COMPLEX array, dimension (LDZ, M) * The computed eigenvectors of the generalized eigenproblem. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= max(1,N). * * D (input) REAL array, dimension (M) * The computed eigenvalues of the generalized eigenproblem. * * WORK (workspace) COMPLEX array, dimension (N*N) * * RWORK (workspace) REAL array, dimension (N) * * RESULT (output) REAL array, dimension (1) * The test ratio as described above. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. INTEGER I REAL ANORM, ULP * .. * .. External Functions .. REAL CLANGE, CLANHE, SLAMCH EXTERNAL CLANGE, CLANHE, SLAMCH * .. * .. External Subroutines .. EXTERNAL CHEMM, CSSCAL * .. * .. Executable Statements .. * RESULT( 1 ) = ZERO IF( N.LE.0 ) $ RETURN * ULP = SLAMCH( 'Epsilon' ) * * Compute product of 1-norms of A and Z. * ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )* $ CLANGE( '1', N, M, Z, LDZ, RWORK ) IF( ANORM.EQ.ZERO ) $ ANORM = ONE * IF( ITYPE.EQ.1 ) THEN * * Norm of AZ - BZD * CALL CHEMM( 'Left', UPLO, N, M, CONE, A, LDA, Z, LDZ, CZERO, $ WORK, N ) DO 10 I = 1, M CALL CSSCAL( N, D( I ), Z( 1, I ), 1 ) 10 CONTINUE CALL CHEMM( 'Left', UPLO, N, M, CONE, B, LDB, Z, LDZ, -CONE, $ WORK, N ) * RESULT( 1 ) = ( CLANGE( '1', N, M, WORK, N, RWORK ) / ANORM ) / $ ( N*ULP ) * ELSE IF( ITYPE.EQ.2 ) THEN * * Norm of ABZ - ZD * CALL CHEMM( 'Left', UPLO, N, M, CONE, B, LDB, Z, LDZ, CZERO, $ WORK, N ) DO 20 I = 1, M CALL CSSCAL( N, D( I ), Z( 1, I ), 1 ) 20 CONTINUE CALL CHEMM( 'Left', UPLO, N, M, CONE, A, LDA, WORK, N, -CONE, $ Z, LDZ ) * RESULT( 1 ) = ( CLANGE( '1', N, M, Z, LDZ, RWORK ) / ANORM ) / $ ( N*ULP ) * ELSE IF( ITYPE.EQ.3 ) THEN * * Norm of BAZ - ZD * CALL CHEMM( 'Left', UPLO, N, M, CONE, A, LDA, Z, LDZ, CZERO, $ WORK, N ) DO 30 I = 1, M CALL CSSCAL( N, D( I ), Z( 1, I ), 1 ) 30 CONTINUE CALL CHEMM( 'Left', UPLO, N, M, CONE, B, LDB, WORK, N, -CONE, $ Z, LDZ ) * RESULT( 1 ) = ( CLANGE( '1', N, M, Z, LDZ, RWORK ) / ANORM ) / $ ( N*ULP ) END IF * RETURN * * End of CSGT01 * END |