CSGT01
   Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
November 2006
modified August 1997, a new parameter M is added to the calling
sequence.
November 2006
modified August 1997, a new parameter M is added to the calling
sequence.
Purpose
CSGT01 checks a decomposition of the form
A Z = B Z D or
A B Z = Z D or
B A Z = Z D
where A is a Hermitian matrix, B is Hermitian positive definite,
Z is unitary, and D is diagonal.
One of the following test ratios is computed:
ITYPE = 1: RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp )
ITYPE = 2: RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp )
ITYPE = 3: RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp )
A Z = B Z D or
A B Z = Z D or
B A Z = Z D
where A is a Hermitian matrix, B is Hermitian positive definite,
Z is unitary, and D is diagonal.
One of the following test ratios is computed:
ITYPE = 1: RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp )
ITYPE = 2: RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp )
ITYPE = 3: RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp )
Arguments
| ITYPE | 
 
(input) INTEGER
 
The form of the Hermitian generalized eigenproblem. 
= 1: A*z = (lambda)*B*z = 2: A*B*z = (lambda)*z = 3: B*A*z = (lambda)*z  | 
| UPLO | 
 
(input) CHARACTER*1
 
Specifies whether the upper or lower triangular part of the 
Hermitian matrices A and B is stored. = 'U': Upper triangular = 'L': Lower triangular  | 
| N | 
 
(input) INTEGER
 
The order of the matrix A.  N >= 0. 
 | 
| M | 
 
(input) INTEGER
 
The number of eigenvalues found.  M >= 0. 
 | 
| A | 
 
(input) COMPLEX array, dimension (LDA, N)
 
The original Hermitian matrix A. 
 | 
| LDA | 
 
(input) INTEGER
 
The leading dimension of the array A.  LDA >= max(1,N). 
 | 
| B | 
 
(input) COMPLEX array, dimension (LDB, N)
 
The original Hermitian positive definite matrix B. 
 | 
| LDB | 
 
(input) INTEGER
 
The leading dimension of the array B.  LDB >= max(1,N). 
 | 
| Z | 
 
(input) COMPLEX array, dimension (LDZ, M)
 
The computed eigenvectors of the generalized eigenproblem. 
 | 
| LDZ | 
 
(input) INTEGER
 
The leading dimension of the array Z.  LDZ >= max(1,N). 
 | 
| D | 
 
(input) REAL array, dimension (M)
 
The computed eigenvalues of the generalized eigenproblem. 
 | 
| WORK | 
 
(workspace) COMPLEX array, dimension (N*N)
 
 | 
| RWORK | 
 
(workspace) REAL array, dimension (N)
 
 | 
| RESULT | 
 
(output) REAL array, dimension (1)
 
The test ratio as described above. 
 |