1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 |
SUBROUTINE DDRGSX( NSIZE, NCMAX, THRESH, NIN, NOUT, A, LDA, B, AI,
$ BI, Z, Q, ALPHAR, ALPHAI, BETA, C, LDC, S, $ WORK, LWORK, IWORK, LIWORK, BWORK, INFO ) * * -- LAPACK test routine (version 3.3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * -- April 2011 -- * * .. Scalar Arguments .. INTEGER INFO, LDA, LDC, LIWORK, LWORK, NCMAX, NIN, $ NOUT, NSIZE DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL BWORK( * ) INTEGER IWORK( * ) DOUBLE PRECISION A( LDA, * ), AI( LDA, * ), ALPHAI( * ), $ ALPHAR( * ), B( LDA, * ), BETA( * ), $ BI( LDA, * ), C( LDC, * ), Q( LDA, * ), S( * ), $ WORK( * ), Z( LDA, * ) * .. * * Purpose * ======= * * DDRGSX checks the nonsymmetric generalized eigenvalue (Schur form) * problem expert driver DGGESX. * * DGGESX factors A and B as Q S Z' and Q T Z', where ' means * transpose, T is upper triangular, S is in generalized Schur form * (block upper triangular, with 1x1 and 2x2 blocks on the diagonal, * the 2x2 blocks corresponding to complex conjugate pairs of * generalized eigenvalues), and Q and Z are orthogonal. It also * computes the generalized eigenvalues (alpha(1),beta(1)), ..., * (alpha(n),beta(n)). Thus, w(j) = alpha(j)/beta(j) is a root of the * characteristic equation * * det( A - w(j) B ) = 0 * * Optionally it also reorders the eigenvalues so that a selected * cluster of eigenvalues appears in the leading diagonal block of the * Schur forms; computes a reciprocal condition number for the average * of the selected eigenvalues; and computes a reciprocal condition * number for the right and left deflating subspaces corresponding to * the selected eigenvalues. * * When DDRGSX is called with NSIZE > 0, five (5) types of built-in * matrix pairs are used to test the routine DGGESX. * * When DDRGSX is called with NSIZE = 0, it reads in test matrix data * to test DGGESX. * * For each matrix pair, the following tests will be performed and * compared with the threshhold THRESH except for the tests (7) and (9): * * (1) | A - Q S Z' | / ( |A| n ulp ) * * (2) | B - Q T Z' | / ( |B| n ulp ) * * (3) | I - QQ' | / ( n ulp ) * * (4) | I - ZZ' | / ( n ulp ) * * (5) if A is in Schur form (i.e. quasi-triangular form) * * (6) maximum over j of D(j) where: * * if alpha(j) is real: * |alpha(j) - S(j,j)| |beta(j) - T(j,j)| * D(j) = ------------------------ + ----------------------- * max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|) * * if alpha(j) is complex: * | det( s S - w T ) | * D(j) = --------------------------------------------------- * ulp max( s norm(S), |w| norm(T) )*norm( s S - w T ) * * and S and T are here the 2 x 2 diagonal blocks of S and T * corresponding to the j-th and j+1-th eigenvalues. * * (7) if sorting worked and SDIM is the number of eigenvalues * which were selected. * * (8) the estimated value DIF does not differ from the true values of * Difu and Difl more than a factor 10*THRESH. If the estimate DIF * equals zero the corresponding true values of Difu and Difl * should be less than EPS*norm(A, B). If the true value of Difu * and Difl equal zero, the estimate DIF should be less than * EPS*norm(A, B). * * (9) If INFO = N+3 is returned by DGGESX, the reordering "failed" * and we check that DIF = PL = PR = 0 and that the true value of * Difu and Difl is < EPS*norm(A, B). We count the events when * INFO=N+3. * * For read-in test matrices, the above tests are run except that the * exact value for DIF (and PL) is input data. Additionally, there is * one more test run for read-in test matrices: * * (10) the estimated value PL does not differ from the true value of * PLTRU more than a factor THRESH. If the estimate PL equals * zero the corresponding true value of PLTRU should be less than * EPS*norm(A, B). If the true value of PLTRU equal zero, the * estimate PL should be less than EPS*norm(A, B). * * Note that for the built-in tests, a total of 10*NSIZE*(NSIZE-1) * matrix pairs are generated and tested. NSIZE should be kept small. * * SVD (routine DGESVD) is used for computing the true value of DIF_u * and DIF_l when testing the built-in test problems. * * Built-in Test Matrices * ====================== * * All built-in test matrices are the 2 by 2 block of triangular * matrices * * A = [ A11 A12 ] and B = [ B11 B12 ] * [ A22 ] [ B22 ] * * where for different type of A11 and A22 are given as the following. * A12 and B12 are chosen so that the generalized Sylvester equation * * A11*R - L*A22 = -A12 * B11*R - L*B22 = -B12 * * have prescribed solution R and L. * * Type 1: A11 = J_m(1,-1) and A_22 = J_k(1-a,1). * B11 = I_m, B22 = I_k * where J_k(a,b) is the k-by-k Jordan block with ``a'' on * diagonal and ``b'' on superdiagonal. * * Type 2: A11 = (a_ij) = ( 2(.5-sin(i)) ) and * B11 = (b_ij) = ( 2(.5-sin(ij)) ) for i=1,...,m, j=i,...,m * A22 = (a_ij) = ( 2(.5-sin(i+j)) ) and * B22 = (b_ij) = ( 2(.5-sin(ij)) ) for i=m+1,...,k, j=i,...,k * * Type 3: A11, A22 and B11, B22 are chosen as for Type 2, but each * second diagonal block in A_11 and each third diagonal block * in A_22 are made as 2 by 2 blocks. * * Type 4: A11 = ( 20(.5 - sin(ij)) ) and B22 = ( 2(.5 - sin(i+j)) ) * for i=1,...,m, j=1,...,m and * A22 = ( 20(.5 - sin(i+j)) ) and B22 = ( 2(.5 - sin(ij)) ) * for i=m+1,...,k, j=m+1,...,k * * Type 5: (A,B) and have potentially close or common eigenvalues and * very large departure from block diagonality A_11 is chosen * as the m x m leading submatrix of A_1: * | 1 b | * | -b 1 | * | 1+d b | * | -b 1+d | * A_1 = | d 1 | * | -1 d | * | -d 1 | * | -1 -d | * | 1 | * and A_22 is chosen as the k x k leading submatrix of A_2: * | -1 b | * | -b -1 | * | 1-d b | * | -b 1-d | * A_2 = | d 1+b | * | -1-b d | * | -d 1+b | * | -1+b -d | * | 1-d | * and matrix B are chosen as identity matrices (see DLATM5). * * * Arguments * ========= * * NSIZE (input) INTEGER * The maximum size of the matrices to use. NSIZE >= 0. * If NSIZE = 0, no built-in tests matrices are used, but * read-in test matrices are used to test DGGESX. * * NCMAX (input) INTEGER * Maximum allowable NMAX for generating Kroneker matrix * in call to DLAKF2 * * THRESH (input) DOUBLE PRECISION * A test will count as "failed" if the "error", computed as * described above, exceeds THRESH. Note that the error * is scaled to be O(1), so THRESH should be a reasonably * small multiple of 1, e.g., 10 or 100. In particular, * it should not depend on the precision (single vs. double) * or the size of the matrix. THRESH >= 0. * * NIN (input) INTEGER * The FORTRAN unit number for reading in the data file of * problems to solve. * * NOUT (input) INTEGER * The FORTRAN unit number for printing out error messages * (e.g., if a routine returns IINFO not equal to 0.) * * A (workspace) DOUBLE PRECISION array, dimension (LDA, NSIZE) * Used to store the matrix whose eigenvalues are to be * computed. On exit, A contains the last matrix actually used. * * LDA (input) INTEGER * The leading dimension of A, B, AI, BI, Z and Q, * LDA >= max( 1, NSIZE ). For the read-in test, * LDA >= max( 1, N ), N is the size of the test matrices. * * B (workspace) DOUBLE PRECISION array, dimension (LDA, NSIZE) * Used to store the matrix whose eigenvalues are to be * computed. On exit, B contains the last matrix actually used. * * AI (workspace) DOUBLE PRECISION array, dimension (LDA, NSIZE) * Copy of A, modified by DGGESX. * * BI (workspace) DOUBLE PRECISION array, dimension (LDA, NSIZE) * Copy of B, modified by DGGESX. * * Z (workspace) DOUBLE PRECISION array, dimension (LDA, NSIZE) * Z holds the left Schur vectors computed by DGGESX. * * Q (workspace) DOUBLE PRECISION array, dimension (LDA, NSIZE) * Q holds the right Schur vectors computed by DGGESX. * * ALPHAR (workspace) DOUBLE PRECISION array, dimension (NSIZE) * ALPHAI (workspace) DOUBLE PRECISION array, dimension (NSIZE) * BETA (workspace) DOUBLE PRECISION array, dimension (NSIZE) * On exit, (ALPHAR + ALPHAI*i)/BETA are the eigenvalues. * * C (workspace) DOUBLE PRECISION array, dimension (LDC, LDC) * Store the matrix generated by subroutine DLAKF2, this is the * matrix formed by Kronecker products used for estimating * DIF. * * LDC (input) INTEGER * The leading dimension of C. LDC >= max(1, LDA*LDA/2 ). * * S (workspace) DOUBLE PRECISION array, dimension (LDC) * Singular values of C * * WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) * * LWORK (input) INTEGER * The dimension of the array WORK. * LWORK >= MAX( 5*NSIZE*NSIZE/2 - 2, 10*(NSIZE+1) ) * * IWORK (workspace) INTEGER array, dimension (LIWORK) * * LIWORK (input) INTEGER * The dimension of the array IWORK. LIWORK >= NSIZE + 6. * * BWORK (workspace) LOGICAL array, dimension (LDA) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value. * > 0: A routine returned an error code. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TEN PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 1.0D+1 ) * .. * .. Local Scalars .. LOGICAL ILABAD CHARACTER SENSE INTEGER BDSPAC, I, I1, IFUNC, IINFO, J, LINFO, MAXWRK, $ MINWRK, MM, MN2, NERRS, NPTKNT, NTEST, NTESTT, $ PRTYPE, QBA, QBB DOUBLE PRECISION ABNRM, BIGNUM, DIFTRU, PLTRU, SMLNUM, TEMP1, $ TEMP2, THRSH2, ULP, ULPINV, WEIGHT * .. * .. Local Arrays .. DOUBLE PRECISION DIFEST( 2 ), PL( 2 ), RESULT( 10 ) * .. * .. External Functions .. LOGICAL DLCTSX INTEGER ILAENV DOUBLE PRECISION DLAMCH, DLANGE EXTERNAL DLCTSX, ILAENV, DLAMCH, DLANGE * .. * .. External Subroutines .. EXTERNAL ALASVM, DGESVD, DGET51, DGET53, DGGESX, DLABAD, $ DLACPY, DLAKF2, DLASET, DLATM5, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, SQRT * .. * .. Scalars in Common .. LOGICAL FS INTEGER K, M, MPLUSN, N * .. * .. Common blocks .. COMMON / MN / M, N, MPLUSN, K, FS * .. * .. Executable Statements .. * * Check for errors * IF( NSIZE.LT.0 ) THEN INFO = -1 ELSE IF( THRESH.LT.ZERO ) THEN INFO = -2 ELSE IF( NIN.LE.0 ) THEN INFO = -3 ELSE IF( NOUT.LE.0 ) THEN INFO = -4 ELSE IF( LDA.LT.1 .OR. LDA.LT.NSIZE ) THEN INFO = -6 ELSE IF( LDC.LT.1 .OR. LDC.LT.NSIZE*NSIZE / 2 ) THEN INFO = -17 ELSE IF( LIWORK.LT.NSIZE+6 ) THEN INFO = -21 END IF * * Compute workspace * (Note: Comments in the code beginning "Workspace:" describe the * minimal amount of workspace needed at that point in the code, * as well as the preferred amount for good performance. * NB refers to the optimal block size for the immediately * following subroutine, as returned by ILAENV.) * MINWRK = 1 IF( INFO.EQ.0 .AND. LWORK.GE.1 ) THEN MINWRK = MAX( 10*( NSIZE+1 ), 5*NSIZE*NSIZE / 2 ) * * workspace for sggesx * MAXWRK = 9*( NSIZE+1 ) + NSIZE* $ ILAENV( 1, 'DGEQRF', ' ', NSIZE, 1, NSIZE, 0 ) MAXWRK = MAX( MAXWRK, 9*( NSIZE+1 )+NSIZE* $ ILAENV( 1, 'DORGQR', ' ', NSIZE, 1, NSIZE, -1 ) ) * * workspace for dgesvd * BDSPAC = 5*NSIZE*NSIZE / 2 MAXWRK = MAX( MAXWRK, 3*NSIZE*NSIZE / 2+NSIZE*NSIZE* $ ILAENV( 1, 'DGEBRD', ' ', NSIZE*NSIZE / 2, $ NSIZE*NSIZE / 2, -1, -1 ) ) MAXWRK = MAX( MAXWRK, BDSPAC ) * MAXWRK = MAX( MAXWRK, MINWRK ) * WORK( 1 ) = MAXWRK END IF * IF( LWORK.LT.MINWRK ) $ INFO = -19 * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DDRGSX', -INFO ) RETURN END IF * * Important constants * ULP = DLAMCH( 'P' ) ULPINV = ONE / ULP SMLNUM = DLAMCH( 'S' ) / ULP BIGNUM = ONE / SMLNUM CALL DLABAD( SMLNUM, BIGNUM ) THRSH2 = TEN*THRESH NTESTT = 0 NERRS = 0 * * Go to the tests for read-in matrix pairs * IFUNC = 0 IF( NSIZE.EQ.0 ) $ GO TO 70 * * Test the built-in matrix pairs. * Loop over different functions (IFUNC) of DGGESX, types (PRTYPE) * of test matrices, different size (M+N) * PRTYPE = 0 QBA = 3 QBB = 4 WEIGHT = SQRT( ULP ) * DO 60 IFUNC = 0, 3 DO 50 PRTYPE = 1, 5 DO 40 M = 1, NSIZE - 1 DO 30 N = 1, NSIZE - M * WEIGHT = ONE / WEIGHT MPLUSN = M + N * * Generate test matrices * FS = .TRUE. K = 0 * CALL DLASET( 'Full', MPLUSN, MPLUSN, ZERO, ZERO, AI, $ LDA ) CALL DLASET( 'Full', MPLUSN, MPLUSN, ZERO, ZERO, BI, $ LDA ) * CALL DLATM5( PRTYPE, M, N, AI, LDA, AI( M+1, M+1 ), $ LDA, AI( 1, M+1 ), LDA, BI, LDA, $ BI( M+1, M+1 ), LDA, BI( 1, M+1 ), LDA, $ Q, LDA, Z, LDA, WEIGHT, QBA, QBB ) * * Compute the Schur factorization and swapping the * m-by-m (1,1)-blocks with n-by-n (2,2)-blocks. * Swapping is accomplished via the function DLCTSX * which is supplied below. * IF( IFUNC.EQ.0 ) THEN SENSE = 'N' ELSE IF( IFUNC.EQ.1 ) THEN SENSE = 'E' ELSE IF( IFUNC.EQ.2 ) THEN SENSE = 'V' ELSE IF( IFUNC.EQ.3 ) THEN SENSE = 'B' END IF * CALL DLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, A, LDA ) CALL DLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA, B, LDA ) * CALL DGGESX( 'V', 'V', 'S', DLCTSX, SENSE, MPLUSN, AI, $ LDA, BI, LDA, MM, ALPHAR, ALPHAI, BETA, $ Q, LDA, Z, LDA, PL, DIFEST, WORK, LWORK, $ IWORK, LIWORK, BWORK, LINFO ) * IF( LINFO.NE.0 .AND. LINFO.NE.MPLUSN+2 ) THEN RESULT( 1 ) = ULPINV WRITE( NOUT, FMT = 9999 )'DGGESX', LINFO, MPLUSN, $ PRTYPE INFO = LINFO GO TO 30 END IF * * Compute the norm(A, B) * CALL DLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, WORK, $ MPLUSN ) CALL DLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA, $ WORK( MPLUSN*MPLUSN+1 ), MPLUSN ) ABNRM = DLANGE( 'Fro', MPLUSN, 2*MPLUSN, WORK, MPLUSN, $ WORK ) * * Do tests (1) to (4) * CALL DGET51( 1, MPLUSN, A, LDA, AI, LDA, Q, LDA, Z, $ LDA, WORK, RESULT( 1 ) ) CALL DGET51( 1, MPLUSN, B, LDA, BI, LDA, Q, LDA, Z, $ LDA, WORK, RESULT( 2 ) ) CALL DGET51( 3, MPLUSN, B, LDA, BI, LDA, Q, LDA, Q, $ LDA, WORK, RESULT( 3 ) ) CALL DGET51( 3, MPLUSN, B, LDA, BI, LDA, Z, LDA, Z, $ LDA, WORK, RESULT( 4 ) ) NTEST = 4 * * Do tests (5) and (6): check Schur form of A and * compare eigenvalues with diagonals. * TEMP1 = ZERO RESULT( 5 ) = ZERO RESULT( 6 ) = ZERO * DO 10 J = 1, MPLUSN ILABAD = .FALSE. IF( ALPHAI( J ).EQ.ZERO ) THEN TEMP2 = ( ABS( ALPHAR( J )-AI( J, J ) ) / $ MAX( SMLNUM, ABS( ALPHAR( J ) ), $ ABS( AI( J, J ) ) )+ $ ABS( BETA( J )-BI( J, J ) ) / $ MAX( SMLNUM, ABS( BETA( J ) ), $ ABS( BI( J, J ) ) ) ) / ULP IF( J.LT.MPLUSN ) THEN IF( AI( J+1, J ).NE.ZERO ) THEN ILABAD = .TRUE. RESULT( 5 ) = ULPINV END IF END IF IF( J.GT.1 ) THEN IF( AI( J, J-1 ).NE.ZERO ) THEN ILABAD = .TRUE. RESULT( 5 ) = ULPINV END IF END IF ELSE IF( ALPHAI( J ).GT.ZERO ) THEN I1 = J ELSE I1 = J - 1 END IF IF( I1.LE.0 .OR. I1.GE.MPLUSN ) THEN ILABAD = .TRUE. ELSE IF( I1.LT.MPLUSN-1 ) THEN IF( AI( I1+2, I1+1 ).NE.ZERO ) THEN ILABAD = .TRUE. RESULT( 5 ) = ULPINV END IF ELSE IF( I1.GT.1 ) THEN IF( AI( I1, I1-1 ).NE.ZERO ) THEN ILABAD = .TRUE. RESULT( 5 ) = ULPINV END IF END IF IF( .NOT.ILABAD ) THEN CALL DGET53( AI( I1, I1 ), LDA, BI( I1, I1 ), $ LDA, BETA( J ), ALPHAR( J ), $ ALPHAI( J ), TEMP2, IINFO ) IF( IINFO.GE.3 ) THEN WRITE( NOUT, FMT = 9997 )IINFO, J, $ MPLUSN, PRTYPE INFO = ABS( IINFO ) END IF ELSE TEMP2 = ULPINV END IF END IF TEMP1 = MAX( TEMP1, TEMP2 ) IF( ILABAD ) THEN WRITE( NOUT, FMT = 9996 )J, MPLUSN, PRTYPE END IF 10 CONTINUE RESULT( 6 ) = TEMP1 NTEST = NTEST + 2 * * Test (7) (if sorting worked) * RESULT( 7 ) = ZERO IF( LINFO.EQ.MPLUSN+3 ) THEN RESULT( 7 ) = ULPINV ELSE IF( MM.NE.N ) THEN RESULT( 7 ) = ULPINV END IF NTEST = NTEST + 1 * * Test (8): compare the estimated value DIF and its * value. first, compute the exact DIF. * RESULT( 8 ) = ZERO MN2 = MM*( MPLUSN-MM )*2 IF( IFUNC.GE.2 .AND. MN2.LE.NCMAX*NCMAX ) THEN * * Note: for either following two causes, there are * almost same number of test cases fail the test. * CALL DLAKF2( MM, MPLUSN-MM, AI, LDA, $ AI( MM+1, MM+1 ), BI, $ BI( MM+1, MM+1 ), C, LDC ) * CALL DGESVD( 'N', 'N', MN2, MN2, C, LDC, S, WORK, $ 1, WORK( 2 ), 1, WORK( 3 ), LWORK-2, $ INFO ) DIFTRU = S( MN2 ) * IF( DIFEST( 2 ).EQ.ZERO ) THEN IF( DIFTRU.GT.ABNRM*ULP ) $ RESULT( 8 ) = ULPINV ELSE IF( DIFTRU.EQ.ZERO ) THEN IF( DIFEST( 2 ).GT.ABNRM*ULP ) $ RESULT( 8 ) = ULPINV ELSE IF( ( DIFTRU.GT.THRSH2*DIFEST( 2 ) ) .OR. $ ( DIFTRU*THRSH2.LT.DIFEST( 2 ) ) ) THEN RESULT( 8 ) = MAX( DIFTRU / DIFEST( 2 ), $ DIFEST( 2 ) / DIFTRU ) END IF NTEST = NTEST + 1 END IF * * Test (9) * RESULT( 9 ) = ZERO IF( LINFO.EQ.( MPLUSN+2 ) ) THEN IF( DIFTRU.GT.ABNRM*ULP ) $ RESULT( 9 ) = ULPINV IF( ( IFUNC.GT.1 ) .AND. ( DIFEST( 2 ).NE.ZERO ) ) $ RESULT( 9 ) = ULPINV IF( ( IFUNC.EQ.1 ) .AND. ( PL( 1 ).NE.ZERO ) ) $ RESULT( 9 ) = ULPINV NTEST = NTEST + 1 END IF * NTESTT = NTESTT + NTEST * * Print out tests which fail. * DO 20 J = 1, 9 IF( RESULT( J ).GE.THRESH ) THEN * * If this is the first test to fail, * print a header to the data file. * IF( NERRS.EQ.0 ) THEN WRITE( NOUT, FMT = 9995 )'DGX' * * Matrix types * WRITE( NOUT, FMT = 9993 ) * * Tests performed * WRITE( NOUT, FMT = 9992 )'orthogonal', '''', $ 'transpose', ( '''', I = 1, 4 ) * END IF NERRS = NERRS + 1 IF( RESULT( J ).LT.10000.0D0 ) THEN WRITE( NOUT, FMT = 9991 )MPLUSN, PRTYPE, $ WEIGHT, M, J, RESULT( J ) ELSE WRITE( NOUT, FMT = 9990 )MPLUSN, PRTYPE, $ WEIGHT, M, J, RESULT( J ) END IF END IF 20 CONTINUE * 30 CONTINUE 40 CONTINUE 50 CONTINUE 60 CONTINUE * GO TO 150 * 70 CONTINUE * * Read in data from file to check accuracy of condition estimation * Read input data until N=0 * NPTKNT = 0 * 80 CONTINUE READ( NIN, FMT = *, END = 140 )MPLUSN IF( MPLUSN.EQ.0 ) $ GO TO 140 READ( NIN, FMT = *, END = 140 )N DO 90 I = 1, MPLUSN READ( NIN, FMT = * )( AI( I, J ), J = 1, MPLUSN ) 90 CONTINUE DO 100 I = 1, MPLUSN READ( NIN, FMT = * )( BI( I, J ), J = 1, MPLUSN ) 100 CONTINUE READ( NIN, FMT = * )PLTRU, DIFTRU * NPTKNT = NPTKNT + 1 FS = .TRUE. K = 0 M = MPLUSN - N * CALL DLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, A, LDA ) CALL DLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA, B, LDA ) * * Compute the Schur factorization while swaping the * m-by-m (1,1)-blocks with n-by-n (2,2)-blocks. * CALL DGGESX( 'V', 'V', 'S', DLCTSX, 'B', MPLUSN, AI, LDA, BI, LDA, $ MM, ALPHAR, ALPHAI, BETA, Q, LDA, Z, LDA, PL, DIFEST, $ WORK, LWORK, IWORK, LIWORK, BWORK, LINFO ) * IF( LINFO.NE.0 .AND. LINFO.NE.MPLUSN+2 ) THEN RESULT( 1 ) = ULPINV WRITE( NOUT, FMT = 9998 )'DGGESX', LINFO, MPLUSN, NPTKNT GO TO 130 END IF * * Compute the norm(A, B) * (should this be norm of (A,B) or (AI,BI)?) * CALL DLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, WORK, MPLUSN ) CALL DLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA, $ WORK( MPLUSN*MPLUSN+1 ), MPLUSN ) ABNRM = DLANGE( 'Fro', MPLUSN, 2*MPLUSN, WORK, MPLUSN, WORK ) * * Do tests (1) to (4) * CALL DGET51( 1, MPLUSN, A, LDA, AI, LDA, Q, LDA, Z, LDA, WORK, $ RESULT( 1 ) ) CALL DGET51( 1, MPLUSN, B, LDA, BI, LDA, Q, LDA, Z, LDA, WORK, $ RESULT( 2 ) ) CALL DGET51( 3, MPLUSN, B, LDA, BI, LDA, Q, LDA, Q, LDA, WORK, $ RESULT( 3 ) ) CALL DGET51( 3, MPLUSN, B, LDA, BI, LDA, Z, LDA, Z, LDA, WORK, $ RESULT( 4 ) ) * * Do tests (5) and (6): check Schur form of A and compare * eigenvalues with diagonals. * NTEST = 6 TEMP1 = ZERO RESULT( 5 ) = ZERO RESULT( 6 ) = ZERO * DO 110 J = 1, MPLUSN ILABAD = .FALSE. IF( ALPHAI( J ).EQ.ZERO ) THEN TEMP2 = ( ABS( ALPHAR( J )-AI( J, J ) ) / $ MAX( SMLNUM, ABS( ALPHAR( J ) ), ABS( AI( J, $ J ) ) )+ABS( BETA( J )-BI( J, J ) ) / $ MAX( SMLNUM, ABS( BETA( J ) ), ABS( BI( J, J ) ) ) ) $ / ULP IF( J.LT.MPLUSN ) THEN IF( AI( J+1, J ).NE.ZERO ) THEN ILABAD = .TRUE. RESULT( 5 ) = ULPINV END IF END IF IF( J.GT.1 ) THEN IF( AI( J, J-1 ).NE.ZERO ) THEN ILABAD = .TRUE. RESULT( 5 ) = ULPINV END IF END IF ELSE IF( ALPHAI( J ).GT.ZERO ) THEN I1 = J ELSE I1 = J - 1 END IF IF( I1.LE.0 .OR. I1.GE.MPLUSN ) THEN ILABAD = .TRUE. ELSE IF( I1.LT.MPLUSN-1 ) THEN IF( AI( I1+2, I1+1 ).NE.ZERO ) THEN ILABAD = .TRUE. RESULT( 5 ) = ULPINV END IF ELSE IF( I1.GT.1 ) THEN IF( AI( I1, I1-1 ).NE.ZERO ) THEN ILABAD = .TRUE. RESULT( 5 ) = ULPINV END IF END IF IF( .NOT.ILABAD ) THEN CALL DGET53( AI( I1, I1 ), LDA, BI( I1, I1 ), LDA, $ BETA( J ), ALPHAR( J ), ALPHAI( J ), TEMP2, $ IINFO ) IF( IINFO.GE.3 ) THEN WRITE( NOUT, FMT = 9997 )IINFO, J, MPLUSN, NPTKNT INFO = ABS( IINFO ) END IF ELSE TEMP2 = ULPINV END IF END IF TEMP1 = MAX( TEMP1, TEMP2 ) IF( ILABAD ) THEN WRITE( NOUT, FMT = 9996 )J, MPLUSN, NPTKNT END IF 110 CONTINUE RESULT( 6 ) = TEMP1 * * Test (7) (if sorting worked) <--------- need to be checked. * NTEST = 7 RESULT( 7 ) = ZERO IF( LINFO.EQ.MPLUSN+3 ) $ RESULT( 7 ) = ULPINV * * Test (8): compare the estimated value of DIF and its true value. * NTEST = 8 RESULT( 8 ) = ZERO IF( DIFEST( 2 ).EQ.ZERO ) THEN IF( DIFTRU.GT.ABNRM*ULP ) $ RESULT( 8 ) = ULPINV ELSE IF( DIFTRU.EQ.ZERO ) THEN IF( DIFEST( 2 ).GT.ABNRM*ULP ) $ RESULT( 8 ) = ULPINV ELSE IF( ( DIFTRU.GT.THRSH2*DIFEST( 2 ) ) .OR. $ ( DIFTRU*THRSH2.LT.DIFEST( 2 ) ) ) THEN RESULT( 8 ) = MAX( DIFTRU / DIFEST( 2 ), DIFEST( 2 ) / DIFTRU ) END IF * * Test (9) * NTEST = 9 RESULT( 9 ) = ZERO IF( LINFO.EQ.( MPLUSN+2 ) ) THEN IF( DIFTRU.GT.ABNRM*ULP ) $ RESULT( 9 ) = ULPINV IF( ( IFUNC.GT.1 ) .AND. ( DIFEST( 2 ).NE.ZERO ) ) $ RESULT( 9 ) = ULPINV IF( ( IFUNC.EQ.1 ) .AND. ( PL( 1 ).NE.ZERO ) ) $ RESULT( 9 ) = ULPINV END IF * * Test (10): compare the estimated value of PL and it true value. * NTEST = 10 RESULT( 10 ) = ZERO IF( PL( 1 ).EQ.ZERO ) THEN IF( PLTRU.GT.ABNRM*ULP ) $ RESULT( 10 ) = ULPINV ELSE IF( PLTRU.EQ.ZERO ) THEN IF( PL( 1 ).GT.ABNRM*ULP ) $ RESULT( 10 ) = ULPINV ELSE IF( ( PLTRU.GT.THRESH*PL( 1 ) ) .OR. $ ( PLTRU*THRESH.LT.PL( 1 ) ) ) THEN RESULT( 10 ) = ULPINV END IF * NTESTT = NTESTT + NTEST * * Print out tests which fail. * DO 120 J = 1, NTEST IF( RESULT( J ).GE.THRESH ) THEN * * If this is the first test to fail, * print a header to the data file. * IF( NERRS.EQ.0 ) THEN WRITE( NOUT, FMT = 9995 )'DGX' * * Matrix types * WRITE( NOUT, FMT = 9994 ) * * Tests performed * WRITE( NOUT, FMT = 9992 )'orthogonal', '''', $ 'transpose', ( '''', I = 1, 4 ) * END IF NERRS = NERRS + 1 IF( RESULT( J ).LT.10000.0D0 ) THEN WRITE( NOUT, FMT = 9989 )NPTKNT, MPLUSN, J, RESULT( J ) ELSE WRITE( NOUT, FMT = 9988 )NPTKNT, MPLUSN, J, RESULT( J ) END IF END IF * 120 CONTINUE * 130 CONTINUE GO TO 80 140 CONTINUE * 150 CONTINUE * * Summary * CALL ALASVM( 'DGX', NOUT, NERRS, NTESTT, 0 ) * WORK( 1 ) = MAXWRK * RETURN * 9999 FORMAT( ' DDRGSX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=', $ I6, ', JTYPE=', I6, ')' ) * 9998 FORMAT( ' DDRGSX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=', $ I6, ', Input Example #', I2, ')' ) * 9997 FORMAT( ' DDRGSX: DGET53 returned INFO=', I1, ' for eigenvalue ', $ I6, '.', / 9X, 'N=', I6, ', JTYPE=', I6, ')' ) * 9996 FORMAT( ' DDRGSX: S not in Schur form at eigenvalue ', I6, '.', $ / 9X, 'N=', I6, ', JTYPE=', I6, ')' ) * 9995 FORMAT( / 1X, A3, ' -- Real Expert Generalized Schur form', $ ' problem driver' ) * 9994 FORMAT( 'Input Example' ) * 9993 FORMAT( ' Matrix types: ', / $ ' 1: A is a block diagonal matrix of Jordan blocks ', $ 'and B is the identity ', / ' matrix, ', $ / ' 2: A and B are upper triangular matrices, ', $ / ' 3: A and B are as type 2, but each second diagonal ', $ 'block in A_11 and ', / $ ' each third diaongal block in A_22 are 2x2 blocks,', $ / ' 4: A and B are block diagonal matrices, ', $ / ' 5: (A,B) has potentially close or common ', $ 'eigenvalues.', / ) * 9992 FORMAT( / ' Tests performed: (S is Schur, T is triangular, ', $ 'Q and Z are ', A, ',', / 19X, $ ' a is alpha, b is beta, and ', A, ' means ', A, '.)', $ / ' 1 = | A - Q S Z', A, $ ' | / ( |A| n ulp ) 2 = | B - Q T Z', A, $ ' | / ( |B| n ulp )', / ' 3 = | I - QQ', A, $ ' | / ( n ulp ) 4 = | I - ZZ', A, $ ' | / ( n ulp )', / ' 5 = 1/ULP if A is not in ', $ 'Schur form S', / ' 6 = difference between (alpha,beta)', $ ' and diagonals of (S,T)', / $ ' 7 = 1/ULP if SDIM is not the correct number of ', $ 'selected eigenvalues', / $ ' 8 = 1/ULP if DIFEST/DIFTRU > 10*THRESH or ', $ 'DIFTRU/DIFEST > 10*THRESH', $ / ' 9 = 1/ULP if DIFEST <> 0 or DIFTRU > ULP*norm(A,B) ', $ 'when reordering fails', / $ ' 10 = 1/ULP if PLEST/PLTRU > THRESH or ', $ 'PLTRU/PLEST > THRESH', / $ ' ( Test 10 is only for input examples )', / ) 9991 FORMAT( ' Matrix order=', I2, ', type=', I2, ', a=', D10.3, $ ', order(A_11)=', I2, ', result ', I2, ' is ', 0P, F8.2 ) 9990 FORMAT( ' Matrix order=', I2, ', type=', I2, ', a=', D10.3, $ ', order(A_11)=', I2, ', result ', I2, ' is ', 0P, D10.3 ) 9989 FORMAT( ' Input example #', I2, ', matrix order=', I4, ',', $ ' result ', I2, ' is', 0P, F8.2 ) 9988 FORMAT( ' Input example #', I2, ', matrix order=', I4, ',', $ ' result ', I2, ' is', 1P, D10.3 ) * * End of DDRGSX * END |