1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
SUBROUTINE DORT03( RC, MU, MV, N, K, U, LDU, V, LDV, WORK, LWORK,
$ RESULT, INFO ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER*( * ) RC INTEGER INFO, K, LDU, LDV, LWORK, MU, MV, N DOUBLE PRECISION RESULT * .. * .. Array Arguments .. DOUBLE PRECISION U( LDU, * ), V( LDV, * ), WORK( * ) * .. * * Purpose * ======= * * DORT03 compares two orthogonal matrices U and V to see if their * corresponding rows or columns span the same spaces. The rows are * checked if RC = 'R', and the columns are checked if RC = 'C'. * * RESULT is the maximum of * * | V*V' - I | / ( MV ulp ), if RC = 'R', or * * | V'*V - I | / ( MV ulp ), if RC = 'C', * * and the maximum over rows (or columns) 1 to K of * * | U(i) - S*V(i) |/ ( N ulp ) * * where S is +-1 (chosen to minimize the expression), U(i) is the i-th * row (column) of U, and V(i) is the i-th row (column) of V. * * Arguments * ========== * * RC (input) CHARACTER*1 * If RC = 'R' the rows of U and V are to be compared. * If RC = 'C' the columns of U and V are to be compared. * * MU (input) INTEGER * The number of rows of U if RC = 'R', and the number of * columns if RC = 'C'. If MU = 0 DORT03 does nothing. * MU must be at least zero. * * MV (input) INTEGER * The number of rows of V if RC = 'R', and the number of * columns if RC = 'C'. If MV = 0 DORT03 does nothing. * MV must be at least zero. * * N (input) INTEGER * If RC = 'R', the number of columns in the matrices U and V, * and if RC = 'C', the number of rows in U and V. If N = 0 * DORT03 does nothing. N must be at least zero. * * K (input) INTEGER * The number of rows or columns of U and V to compare. * 0 <= K <= max(MU,MV). * * U (input) DOUBLE PRECISION array, dimension (LDU,N) * The first matrix to compare. If RC = 'R', U is MU by N, and * if RC = 'C', U is N by MU. * * LDU (input) INTEGER * The leading dimension of U. If RC = 'R', LDU >= max(1,MU), * and if RC = 'C', LDU >= max(1,N). * * V (input) DOUBLE PRECISION array, dimension (LDV,N) * The second matrix to compare. If RC = 'R', V is MV by N, and * if RC = 'C', V is N by MV. * * LDV (input) INTEGER * The leading dimension of V. If RC = 'R', LDV >= max(1,MV), * and if RC = 'C', LDV >= max(1,N). * * WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) * * LWORK (input) INTEGER * The length of the array WORK. For best performance, LWORK * should be at least N*N if RC = 'C' or M*M if RC = 'R', but * the tests will be done even if LWORK is 0. * * RESULT (output) DOUBLE PRECISION * The value computed by the test described above. RESULT is * limited to 1/ulp to avoid overflow. * * INFO (output) INTEGER * 0 indicates a successful exit * -k indicates the k-th parameter had an illegal value * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) * .. * .. Local Scalars .. INTEGER I, IRC, J, LMX DOUBLE PRECISION RES1, RES2, S, ULP * .. * .. External Functions .. LOGICAL LSAME INTEGER IDAMAX DOUBLE PRECISION DLAMCH EXTERNAL LSAME, IDAMAX, DLAMCH * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, MIN, SIGN * .. * .. External Subroutines .. EXTERNAL DORT01, XERBLA * .. * .. Executable Statements .. * * Check inputs * INFO = 0 IF( LSAME( RC, 'R' ) ) THEN IRC = 0 ELSE IF( LSAME( RC, 'C' ) ) THEN IRC = 1 ELSE IRC = -1 END IF IF( IRC.EQ.-1 ) THEN INFO = -1 ELSE IF( MU.LT.0 ) THEN INFO = -2 ELSE IF( MV.LT.0 ) THEN INFO = -3 ELSE IF( N.LT.0 ) THEN INFO = -4 ELSE IF( K.LT.0 .OR. K.GT.MAX( MU, MV ) ) THEN INFO = -5 ELSE IF( ( IRC.EQ.0 .AND. LDU.LT.MAX( 1, MU ) ) .OR. $ ( IRC.EQ.1 .AND. LDU.LT.MAX( 1, N ) ) ) THEN INFO = -7 ELSE IF( ( IRC.EQ.0 .AND. LDV.LT.MAX( 1, MV ) ) .OR. $ ( IRC.EQ.1 .AND. LDV.LT.MAX( 1, N ) ) ) THEN INFO = -9 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DORT03', -INFO ) RETURN END IF * * Initialize result * RESULT = ZERO IF( MU.EQ.0 .OR. MV.EQ.0 .OR. N.EQ.0 ) $ RETURN * * Machine constants * ULP = DLAMCH( 'Precision' ) * IF( IRC.EQ.0 ) THEN * * Compare rows * RES1 = ZERO DO 20 I = 1, K LMX = IDAMAX( N, U( I, 1 ), LDU ) S = SIGN( ONE, U( I, LMX ) )*SIGN( ONE, V( I, LMX ) ) DO 10 J = 1, N RES1 = MAX( RES1, ABS( U( I, J )-S*V( I, J ) ) ) 10 CONTINUE 20 CONTINUE RES1 = RES1 / ( DBLE( N )*ULP ) * * Compute orthogonality of rows of V. * CALL DORT01( 'Rows', MV, N, V, LDV, WORK, LWORK, RES2 ) * ELSE * * Compare columns * RES1 = ZERO DO 40 I = 1, K LMX = IDAMAX( N, U( 1, I ), 1 ) S = SIGN( ONE, U( LMX, I ) )*SIGN( ONE, V( LMX, I ) ) DO 30 J = 1, N RES1 = MAX( RES1, ABS( U( J, I )-S*V( J, I ) ) ) 30 CONTINUE 40 CONTINUE RES1 = RES1 / ( DBLE( N )*ULP ) * * Compute orthogonality of columns of V. * CALL DORT01( 'Columns', N, MV, V, LDV, WORK, LWORK, RES2 ) END IF * RESULT = MIN( MAX( RES1, RES2 ), ONE / ULP ) RETURN * * End of DORT03 * END |