1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
SUBROUTINE ZBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
$ RWORK, RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER KD, LDA, LDPT, LDQ, M, N DOUBLE PRECISION RESID * .. * .. Array Arguments .. DOUBLE PRECISION D( * ), E( * ), RWORK( * ) COMPLEX*16 A( LDA, * ), PT( LDPT, * ), Q( LDQ, * ), $ WORK( * ) * .. * * Purpose * ======= * * ZBDT01 reconstructs a general matrix A from its bidiagonal form * A = Q * B * P' * where Q (m by min(m,n)) and P' (min(m,n) by n) are unitary * matrices and B is bidiagonal. * * The test ratio to test the reduction is * RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS ) * where PT = P' and EPS is the machine precision. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrices A and Q. * * N (input) INTEGER * The number of columns of the matrices A and P'. * * KD (input) INTEGER * If KD = 0, B is diagonal and the array E is not referenced. * If KD = 1, the reduction was performed by xGEBRD; B is upper * bidiagonal if M >= N, and lower bidiagonal if M < N. * If KD = -1, the reduction was performed by xGBBRD; B is * always upper bidiagonal. * * A (input) COMPLEX*16 array, dimension (LDA,N) * The m by n matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * Q (input) COMPLEX*16 array, dimension (LDQ,N) * The m by min(m,n) unitary matrix Q in the reduction * A = Q * B * P'. * * LDQ (input) INTEGER * The leading dimension of the array Q. LDQ >= max(1,M). * * D (input) DOUBLE PRECISION array, dimension (min(M,N)) * The diagonal elements of the bidiagonal matrix B. * * E (input) DOUBLE PRECISION array, dimension (min(M,N)-1) * The superdiagonal elements of the bidiagonal matrix B if * m >= n, or the subdiagonal elements of B if m < n. * * PT (input) COMPLEX*16 array, dimension (LDPT,N) * The min(m,n) by n unitary matrix P' in the reduction * A = Q * B * P'. * * LDPT (input) INTEGER * The leading dimension of the array PT. * LDPT >= max(1,min(M,N)). * * WORK (workspace) COMPLEX*16 array, dimension (M+N) * * RWORK (workspace) DOUBLE PRECISION array, dimension (M) * * RESID (output) DOUBLE PRECISION * The test ratio: norm(A - Q * B * P') / ( n * norm(A) * EPS ) * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. INTEGER I, J DOUBLE PRECISION ANORM, EPS * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, DZASUM, ZLANGE EXTERNAL DLAMCH, DZASUM, ZLANGE * .. * .. External Subroutines .. EXTERNAL ZCOPY, ZGEMV * .. * .. Intrinsic Functions .. INTRINSIC DBLE, DCMPLX, MAX, MIN * .. * .. Executable Statements .. * * Quick return if possible * IF( M.LE.0 .OR. N.LE.0 ) THEN RESID = ZERO RETURN END IF * * Compute A - Q * B * P' one column at a time. * RESID = ZERO IF( KD.NE.0 ) THEN * * B is bidiagonal. * IF( KD.NE.0 .AND. M.GE.N ) THEN * * B is upper bidiagonal and M >= N. * DO 20 J = 1, N CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 ) DO 10 I = 1, N - 1 WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J ) 10 CONTINUE WORK( M+N ) = D( N )*PT( N, J ) CALL ZGEMV( 'No transpose', M, N, -DCMPLX( ONE ), Q, LDQ, $ WORK( M+1 ), 1, DCMPLX( ONE ), WORK, 1 ) RESID = MAX( RESID, DZASUM( M, WORK, 1 ) ) 20 CONTINUE ELSE IF( KD.LT.0 ) THEN * * B is upper bidiagonal and M < N. * DO 40 J = 1, N CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 ) DO 30 I = 1, M - 1 WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J ) 30 CONTINUE WORK( M+M ) = D( M )*PT( M, J ) CALL ZGEMV( 'No transpose', M, M, -DCMPLX( ONE ), Q, LDQ, $ WORK( M+1 ), 1, DCMPLX( ONE ), WORK, 1 ) RESID = MAX( RESID, DZASUM( M, WORK, 1 ) ) 40 CONTINUE ELSE * * B is lower bidiagonal. * DO 60 J = 1, N CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 ) WORK( M+1 ) = D( 1 )*PT( 1, J ) DO 50 I = 2, M WORK( M+I ) = E( I-1 )*PT( I-1, J ) + $ D( I )*PT( I, J ) 50 CONTINUE CALL ZGEMV( 'No transpose', M, M, -DCMPLX( ONE ), Q, LDQ, $ WORK( M+1 ), 1, DCMPLX( ONE ), WORK, 1 ) RESID = MAX( RESID, DZASUM( M, WORK, 1 ) ) 60 CONTINUE END IF ELSE * * B is diagonal. * IF( M.GE.N ) THEN DO 80 J = 1, N CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 ) DO 70 I = 1, N WORK( M+I ) = D( I )*PT( I, J ) 70 CONTINUE CALL ZGEMV( 'No transpose', M, N, -DCMPLX( ONE ), Q, LDQ, $ WORK( M+1 ), 1, DCMPLX( ONE ), WORK, 1 ) RESID = MAX( RESID, DZASUM( M, WORK, 1 ) ) 80 CONTINUE ELSE DO 100 J = 1, N CALL ZCOPY( M, A( 1, J ), 1, WORK, 1 ) DO 90 I = 1, M WORK( M+I ) = D( I )*PT( I, J ) 90 CONTINUE CALL ZGEMV( 'No transpose', M, M, -DCMPLX( ONE ), Q, LDQ, $ WORK( M+1 ), 1, DCMPLX( ONE ), WORK, 1 ) RESID = MAX( RESID, DZASUM( M, WORK, 1 ) ) 100 CONTINUE END IF END IF * * Compute norm(A - Q * B * P') / ( n * norm(A) * EPS ) * ANORM = ZLANGE( '1', M, N, A, LDA, RWORK ) EPS = DLAMCH( 'Precision' ) * IF( ANORM.LE.ZERO ) THEN IF( RESID.NE.ZERO ) $ RESID = ONE / EPS ELSE IF( ANORM.GE.RESID ) THEN RESID = ( RESID / ANORM ) / ( DBLE( N )*EPS ) ELSE IF( ANORM.LT.ONE ) THEN RESID = ( MIN( RESID, DBLE( N )*ANORM ) / ANORM ) / $ ( DBLE( N )*EPS ) ELSE RESID = MIN( RESID / ANORM, DBLE( N ) ) / $ ( DBLE( N )*EPS ) END IF END IF END IF * RETURN * * End of ZBDT01 * END |