1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
SUBROUTINE ZCSDTS( M, P, Q, X, XF, LDX, U1, LDU1, U2, LDU2, V1T,
$ LDV1T, V2T, LDV2T, THETA, IWORK, WORK, LWORK, $ RWORK, RESULT ) IMPLICIT NONE * * Originally xGSVTS * -- LAPACK test routine (version 3.3.0) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2010 * * Adapted to ZCSDTS * July 2010 * * .. Scalar Arguments .. INTEGER LDX, LDU1, LDU2, LDV1T, LDV2T, LWORK, M, P, Q * .. * .. Array Arguments .. INTEGER IWORK( * ) DOUBLE PRECISION RESULT( 9 ), RWORK( * ), THETA( * ) COMPLEX*16 U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ), $ V2T( LDV2T, * ), WORK( LWORK ), X( LDX, * ), $ XF( LDX, * ) * .. * * Purpose * ======= * * ZCSDTS tests ZUNCSD, which, given an M-by-M partitioned unitary * matrix X, * Q M-Q * X = [ X11 X12 ] P , * [ X21 X22 ] M-P * * computes the CSD * * [ U1 ]**T * [ X11 X12 ] * [ V1 ] * [ U2 ] [ X21 X22 ] [ V2 ] * * [ I 0 0 | 0 0 0 ] * [ 0 C 0 | 0 -S 0 ] * [ 0 0 0 | 0 0 -I ] * = [---------------------] = [ D11 D12 ] . * [ 0 0 0 | I 0 0 ] [ D21 D22 ] * [ 0 S 0 | 0 C 0 ] * [ 0 0 I | 0 0 0 ] * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix X. M >= 0. * * P (input) INTEGER * The number of rows of the matrix X11. P >= 0. * * Q (input) INTEGER * The number of columns of the matrix X11. Q >= 0. * * X (input) COMPLEX*16 array, dimension (LDX,M) * The M-by-M matrix X. * * XF (output) COMPLEX*16 array, dimension (LDX,M) * Details of the CSD of X, as returned by ZUNCSD; * see ZUNCSD for further details. * * LDX (input) INTEGER * The leading dimension of the arrays X and XF. * LDX >= max( 1,M ). * * U1 (output) COMPLEX*16 array, dimension(LDU1,P) * The P-by-P unitary matrix U1. * * LDU1 (input) INTEGER * The leading dimension of the array U1. LDU >= max(1,P). * * U2 (output) COMPLEX*16 array, dimension(LDU2,M-P) * The (M-P)-by-(M-P) unitary matrix U2. * * LDU2 (input) INTEGER * The leading dimension of the array U2. LDU >= max(1,M-P). * * V1T (output) COMPLEX*16 array, dimension(LDV1T,Q) * The Q-by-Q unitary matrix V1T. * * LDV1T (input) INTEGER * The leading dimension of the array V1T. LDV1T >= * max(1,Q). * * V2T (output) COMPLEX*16 array, dimension(LDV2T,M-Q) * The (M-Q)-by-(M-Q) unitary matrix V2T. * * LDV2T (input) INTEGER * The leading dimension of the array V2T. LDV2T >= * max(1,M-Q). * * THETA (output) DOUBLE PRECISION array, dimension MIN(P,M-P,Q,M-Q) * The CS values of X; the essentially diagonal matrices C and * S are constructed from THETA; see subroutine ZUNCSD for * details. * * IWORK (workspace) INTEGER array, dimension (M) * * WORK (workspace) COMPLEX*16 array, dimension (LWORK) * * LWORK (input) INTEGER * The dimension of the array WORK * * RWORK (workspace) DOUBLE PRECISION array * * RESULT (output) DOUBLE PRECISION array, dimension (9) * The test ratios: * RESULT(1) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) * RESULT(2) = norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 ) * RESULT(3) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) * RESULT(4) = norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 ) * RESULT(5) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP ) * RESULT(6) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP ) * RESULT(7) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP ) * RESULT(8) = norm( I - V2T'*V2T ) / ( MAX(1,M-Q)*ULP ) * RESULT(9) = 0 if THETA is in increasing order and * all angles are in [0,pi/2]; * = ULPINV otherwise. * ( EPS2 = MAX( norm( I - X'*X ) / M, ULP ). ) * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION PIOVER2, REALONE, REALZERO PARAMETER ( PIOVER2 = 1.57079632679489662D0, $ REALONE = 1.0D0, REALZERO = 0.0D0 ) COMPLEX*16 ZERO, ONE PARAMETER ( ZERO = (0.0D0,0.0D0), ONE = (1.0D0,0.0D0) ) * .. * .. Local Scalars .. INTEGER I, INFO, R DOUBLE PRECISION EPS2, RESID, ULP, ULPINV * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHE EXTERNAL DLAMCH, ZLANGE, ZLANHE * .. * .. External Subroutines .. EXTERNAL ZGEMM, ZLACPY, ZLASET, ZUNCSD, ZHERK * .. * .. Intrinsic Functions .. INTRINSIC REAL, MAX, MIN * .. * .. Executable Statements .. * ULP = DLAMCH( 'Precision' ) ULPINV = REALONE / ULP CALL ZLASET( 'Full', M, M, ZERO, ONE, WORK, LDX ) CALL ZHERK( 'Upper', 'Conjugate transpose', M, M, -ONE, X, LDX, $ ONE, WORK, LDX ) EPS2 = MAX( ULP, $ ZLANGE( '1', M, M, WORK, LDX, RWORK ) / REAL( M ) ) R = MIN( P, M-P, Q, M-Q ) * * Copy the matrix X to the array XF. * CALL ZLACPY( 'Full', M, M, X, LDX, XF, LDX ) * * Compute the CSD * CALL ZUNCSD( 'Y', 'Y', 'Y', 'Y', 'N', 'D', M, P, Q, XF(1,1), LDX, $ XF(1,Q+1), LDX, XF(P+1,1), LDX, XF(P+1,Q+1), LDX, $ THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, $ WORK, LWORK, RWORK, 17*(R+2), IWORK, INFO ) * * Compute X := diag(U1,U2)'*X*diag(V1,V2) - [D11 D12; D21 D22] * CALL ZGEMM( 'No transpose', 'Conjugate transpose', P, Q, Q, ONE, $ X, LDX, V1T, LDV1T, ZERO, WORK, LDX ) * CALL ZGEMM( 'Conjugate transpose', 'No transpose', P, Q, P, ONE, $ U1, LDU1, WORK, LDX, ZERO, X, LDX ) * DO I = 1, MIN(P,Q)-R X(I,I) = X(I,I) - ONE END DO DO I = 1, R X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) = $ X(MIN(P,Q)-R+I,MIN(P,Q)-R+I) - DCMPLX( COS(THETA(I)), $ 0.0D0 ) END DO * CALL ZGEMM( 'No transpose', 'Conjugate transpose', P, M-Q, M-Q, $ ONE, X(1,Q+1), LDX, V2T, LDV2T, ZERO, WORK, LDX ) * CALL ZGEMM( 'Conjugate transpose', 'No transpose', P, M-Q, P, $ ONE, U1, LDU1, WORK, LDX, ZERO, X(1,Q+1), LDX ) * DO I = 1, MIN(P,M-Q)-R X(P-I+1,M-I+1) = X(P-I+1,M-I+1) + ONE END DO DO I = 1, R X(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) = $ X(P-(MIN(P,M-Q)-R)+1-I,M-(MIN(P,M-Q)-R)+1-I) + $ DCMPLX( SIN(THETA(R-I+1)), 0.0D0 ) END DO * CALL ZGEMM( 'No transpose', 'Conjugate transpose', M-P, Q, Q, ONE, $ X(P+1,1), LDX, V1T, LDV1T, ZERO, WORK, LDX ) * CALL ZGEMM( 'Conjugate transpose', 'No transpose', M-P, Q, M-P, $ ONE, U2, LDU2, WORK, LDX, ZERO, X(P+1,1), LDX ) * DO I = 1, MIN(M-P,Q)-R X(M-I+1,Q-I+1) = X(M-I+1,Q-I+1) - ONE END DO DO I = 1, R X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) = $ X(M-(MIN(M-P,Q)-R)+1-I,Q-(MIN(M-P,Q)-R)+1-I) - $ DCMPLX( SIN(THETA(R-I+1)), 0.0D0 ) END DO * CALL ZGEMM( 'No transpose', 'Conjugate transpose', M-P, M-Q, M-Q, $ ONE, X(P+1,Q+1), LDX, V2T, LDV2T, ZERO, WORK, LDX ) * CALL ZGEMM( 'Conjugate transpose', 'No transpose', M-P, M-Q, M-P, $ ONE, U2, LDU2, WORK, LDX, ZERO, X(P+1,Q+1), LDX ) * DO I = 1, MIN(M-P,M-Q)-R X(P+I,Q+I) = X(P+I,Q+I) - ONE END DO DO I = 1, R X(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) = $ X(P+(MIN(M-P,M-Q)-R)+I,Q+(MIN(M-P,M-Q)-R)+I) - $ DCMPLX( COS(THETA(I)), 0.0D0 ) END DO * * Compute norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) . * RESID = ZLANGE( '1', P, Q, X, LDX, RWORK ) RESULT( 1 ) = ( RESID / REAL(MAX(1,P,Q)) ) / EPS2 * * Compute norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 ) . * RESID = ZLANGE( '1', P, M-Q, X(1,Q+1), LDX, RWORK ) RESULT( 2 ) = ( RESID / REAL(MAX(1,P,M-Q)) ) / EPS2 * * Compute norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) . * RESID = ZLANGE( '1', M-P, Q, X(P+1,1), LDX, RWORK ) RESULT( 3 ) = ( RESID / REAL(MAX(1,M-P,Q)) ) / EPS2 * * Compute norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 ) . * RESID = ZLANGE( '1', M-P, M-Q, X(P+1,Q+1), LDX, RWORK ) RESULT( 4 ) = ( RESID / REAL(MAX(1,M-P,M-Q)) ) / EPS2 * * Compute I - U1'*U1 * CALL ZLASET( 'Full', P, P, ZERO, ONE, WORK, LDU1 ) CALL ZHERK( 'Upper', 'Conjugate transpose', P, P, -ONE, U1, LDU1, $ ONE, WORK, LDU1 ) * * Compute norm( I - U'*U ) / ( MAX(1,P) * ULP ) . * RESID = ZLANHE( '1', 'Upper', P, WORK, LDU1, RWORK ) RESULT( 5 ) = ( RESID / REAL(MAX(1,P)) ) / ULP * * Compute I - U2'*U2 * CALL ZLASET( 'Full', M-P, M-P, ZERO, ONE, WORK, LDU2 ) CALL ZHERK( 'Upper', 'Conjugate transpose', M-P, M-P, -ONE, U2, $ LDU2, ONE, WORK, LDU2 ) * * Compute norm( I - U2'*U2 ) / ( MAX(1,M-P) * ULP ) . * RESID = ZLANHE( '1', 'Upper', M-P, WORK, LDU2, RWORK ) RESULT( 6 ) = ( RESID / REAL(MAX(1,M-P)) ) / ULP * * Compute I - V1T*V1T' * CALL ZLASET( 'Full', Q, Q, ZERO, ONE, WORK, LDV1T ) CALL ZHERK( 'Upper', 'No transpose', Q, Q, -ONE, V1T, LDV1T, ONE, $ WORK, LDV1T ) * * Compute norm( I - V1T*V1T' ) / ( MAX(1,Q) * ULP ) . * RESID = ZLANHE( '1', 'Upper', Q, WORK, LDV1T, RWORK ) RESULT( 7 ) = ( RESID / REAL(MAX(1,Q)) ) / ULP * * Compute I - V2T*V2T' * CALL ZLASET( 'Full', M-Q, M-Q, ZERO, ONE, WORK, LDV2T ) CALL ZHERK( 'Upper', 'No transpose', M-Q, M-Q, -ONE, V2T, LDV2T, $ ONE, WORK, LDV2T ) * * Compute norm( I - V2T*V2T' ) / ( MAX(1,M-Q) * ULP ) . * RESID = ZLANHE( '1', 'Upper', M-Q, WORK, LDV2T, RWORK ) RESULT( 8 ) = ( RESID / REAL(MAX(1,M-Q)) ) / ULP * * Check sorting * RESULT(9) = REALZERO DO I = 1, R IF( THETA(I).LT.REALZERO .OR. THETA(I).GT.PIOVER2 ) THEN RESULT(9) = ULPINV END IF IF( I.GT.1) THEN IF ( THETA(I).LT.THETA(I-1) ) THEN RESULT(9) = ULPINV END IF END IF END DO * RETURN * * End of ZCSDTS * END |