1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
SUBROUTINE ZGET54( N, A, LDA, B, LDB, S, LDS, T, LDT, U, LDU, V,
$ LDV, WORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDA, LDB, LDS, LDT, LDU, LDV, N DOUBLE PRECISION RESULT * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ), B( LDB, * ), S( LDS, * ), $ T( LDT, * ), U( LDU, * ), V( LDV, * ), $ WORK( * ) * .. * * Purpose * ======= * * ZGET54 checks a generalized decomposition of the form * * A = U*S*V' and B = U*T* V' * * where ' means conjugate transpose and U and V are unitary. * * Specifically, * * RESULT = ||( A - U*S*V', B - U*T*V' )|| / (||( A, B )||*n*ulp ) * * Arguments * ========= * * N (input) INTEGER * The size of the matrix. If it is zero, DGET54 does nothing. * It must be at least zero. * * A (input) COMPLEX*16 array, dimension (LDA, N) * The original (unfactored) matrix A. * * LDA (input) INTEGER * The leading dimension of A. It must be at least 1 * and at least N. * * B (input) COMPLEX*16 array, dimension (LDB, N) * The original (unfactored) matrix B. * * LDB (input) INTEGER * The leading dimension of B. It must be at least 1 * and at least N. * * S (input) COMPLEX*16 array, dimension (LDS, N) * The factored matrix S. * * LDS (input) INTEGER * The leading dimension of S. It must be at least 1 * and at least N. * * T (input) COMPLEX*16 array, dimension (LDT, N) * The factored matrix T. * * LDT (input) INTEGER * The leading dimension of T. It must be at least 1 * and at least N. * * U (input) COMPLEX*16 array, dimension (LDU, N) * The orthogonal matrix on the left-hand side in the * decomposition. * * LDU (input) INTEGER * The leading dimension of U. LDU must be at least N and * at least 1. * * V (input) COMPLEX*16 array, dimension (LDV, N) * The orthogonal matrix on the left-hand side in the * decomposition. * * LDV (input) INTEGER * The leading dimension of V. LDV must be at least N and * at least 1. * * WORK (workspace) COMPLEX*16 array, dimension (3*N**2) * * RESULT (output) DOUBLE PRECISION * The value RESULT, It is currently limited to 1/ulp, to * avoid overflow. Errors are flagged by RESULT=10/ulp. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. DOUBLE PRECISION ABNORM, ULP, UNFL, WNORM * .. * .. Local Arrays .. DOUBLE PRECISION DUM( 1 ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, ZLANGE EXTERNAL DLAMCH, ZLANGE * .. * .. External Subroutines .. EXTERNAL ZGEMM, ZLACPY * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MAX, MIN * .. * .. Executable Statements .. * RESULT = ZERO IF( N.LE.0 ) $ RETURN * * Constants * UNFL = DLAMCH( 'Safe minimum' ) ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' ) * * compute the norm of (A,B) * CALL ZLACPY( 'Full', N, N, A, LDA, WORK, N ) CALL ZLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N ) ABNORM = MAX( ZLANGE( '1', N, 2*N, WORK, N, DUM ), UNFL ) * * Compute W1 = A - U*S*V', and put in the array WORK(1:N*N) * CALL ZLACPY( ' ', N, N, A, LDA, WORK, N ) CALL ZGEMM( 'N', 'N', N, N, N, CONE, U, LDU, S, LDS, CZERO, $ WORK( N*N+1 ), N ) * CALL ZGEMM( 'N', 'C', N, N, N, -CONE, WORK( N*N+1 ), N, V, LDV, $ CONE, WORK, N ) * * Compute W2 = B - U*T*V', and put in the workarray W(N*N+1:2*N*N) * CALL ZLACPY( ' ', N, N, B, LDB, WORK( N*N+1 ), N ) CALL ZGEMM( 'N', 'N', N, N, N, CONE, U, LDU, T, LDT, CZERO, $ WORK( 2*N*N+1 ), N ) * CALL ZGEMM( 'N', 'C', N, N, N, -CONE, WORK( 2*N*N+1 ), N, V, LDV, $ CONE, WORK( N*N+1 ), N ) * * Compute norm(W)/ ( ulp*norm((A,B)) ) * WNORM = ZLANGE( '1', N, 2*N, WORK, N, DUM ) * IF( ABNORM.GT.WNORM ) THEN RESULT = ( WNORM / ABNORM ) / ( 2*N*ULP ) ELSE IF( ABNORM.LT.ONE ) THEN RESULT = ( MIN( WNORM, 2*N*ABNORM ) / ABNORM ) / ( 2*N*ULP ) ELSE RESULT = MIN( WNORM / ABNORM, DBLE( 2*N ) ) / ( 2*N*ULP ) END IF END IF * RETURN * * End of ZGET54 * END |