1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
SUBROUTINE ZHET21( ITYPE, UPLO, N, KBAND, A, LDA, D, E, U, LDU, V,
$ LDV, TAU, WORK, RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER ITYPE, KBAND, LDA, LDU, LDV, N * .. * .. Array Arguments .. DOUBLE PRECISION D( * ), E( * ), RESULT( 2 ), RWORK( * ) COMPLEX*16 A( LDA, * ), TAU( * ), U( LDU, * ), $ V( LDV, * ), WORK( * ) * .. * * Purpose * ======= * * ZHET21 generally checks a decomposition of the form * * A = U S U* * * where * means conjugate transpose, A is hermitian, U is unitary, and * S is diagonal (if KBAND=0) or (real) symmetric tridiagonal (if * KBAND=1). * * If ITYPE=1, then U is represented as a dense matrix; otherwise U is * expressed as a product of Householder transformations, whose vectors * are stored in the array "V" and whose scaling constants are in "TAU". * We shall use the letter "V" to refer to the product of Householder * transformations (which should be equal to U). * * Specifically, if ITYPE=1, then: * * RESULT(1) = | A - U S U* | / ( |A| n ulp ) *and* * RESULT(2) = | I - UU* | / ( n ulp ) * * If ITYPE=2, then: * * RESULT(1) = | A - V S V* | / ( |A| n ulp ) * * If ITYPE=3, then: * * RESULT(1) = | I - UV* | / ( n ulp ) * * For ITYPE > 1, the transformation U is expressed as a product * V = H(1)...H(n-2), where H(j) = I - tau(j) v(j) v(j)* and each * vector v(j) has its first j elements 0 and the remaining n-j elements * stored in V(j+1:n,j). * * Arguments * ========= * * ITYPE (input) INTEGER * Specifies the type of tests to be performed. * 1: U expressed as a dense unitary matrix: * RESULT(1) = | A - U S U* | / ( |A| n ulp ) *and* * RESULT(2) = | I - UU* | / ( n ulp ) * * 2: U expressed as a product V of Housholder transformations: * RESULT(1) = | A - V S V* | / ( |A| n ulp ) * * 3: U expressed both as a dense unitary matrix and * as a product of Housholder transformations: * RESULT(1) = | I - UV* | / ( n ulp ) * * UPLO (input) CHARACTER * If UPLO='U', the upper triangle of A and V will be used and * the (strictly) lower triangle will not be referenced. * If UPLO='L', the lower triangle of A and V will be used and * the (strictly) upper triangle will not be referenced. * * N (input) INTEGER * The size of the matrix. If it is zero, ZHET21 does nothing. * It must be at least zero. * * KBAND (input) INTEGER * The bandwidth of the matrix. It may only be zero or one. * If zero, then S is diagonal, and E is not referenced. If * one, then S is symmetric tri-diagonal. * * A (input) COMPLEX*16 array, dimension (LDA, N) * The original (unfactored) matrix. It is assumed to be * hermitian, and only the upper (UPLO='U') or only the lower * (UPLO='L') will be referenced. * * LDA (input) INTEGER * The leading dimension of A. It must be at least 1 * and at least N. * * D (input) DOUBLE PRECISION array, dimension (N) * The diagonal of the (symmetric tri-) diagonal matrix. * * E (input) DOUBLE PRECISION array, dimension (N-1) * The off-diagonal of the (symmetric tri-) diagonal matrix. * E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and * (3,2) element, etc. * Not referenced if KBAND=0. * * U (input) COMPLEX*16 array, dimension (LDU, N) * If ITYPE=1 or 3, this contains the unitary matrix in * the decomposition, expressed as a dense matrix. If ITYPE=2, * then it is not referenced. * * LDU (input) INTEGER * The leading dimension of U. LDU must be at least N and * at least 1. * * V (input) COMPLEX*16 array, dimension (LDV, N) * If ITYPE=2 or 3, the columns of this array contain the * Householder vectors used to describe the unitary matrix * in the decomposition. If UPLO='L', then the vectors are in * the lower triangle, if UPLO='U', then in the upper * triangle. * *NOTE* If ITYPE=2 or 3, V is modified and restored. The * subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U') * is set to one, and later reset to its original value, during * the course of the calculation. * If ITYPE=1, then it is neither referenced nor modified. * * LDV (input) INTEGER * The leading dimension of V. LDV must be at least N and * at least 1. * * TAU (input) COMPLEX*16 array, dimension (N) * If ITYPE >= 2, then TAU(j) is the scalar factor of * v(j) v(j)* in the Householder transformation H(j) of * the product U = H(1)...H(n-2) * If ITYPE < 2, then TAU is not referenced. * * WORK (workspace) COMPLEX*16 array, dimension (2*N**2) * * RWORK (workspace) DOUBLE PRECISION array, dimension (N) * * RESULT (output) DOUBLE PRECISION array, dimension (2) * The values computed by the two tests described above. The * values are currently limited to 1/ulp, to avoid overflow. * RESULT(1) is always modified. RESULT(2) is modified only * if ITYPE=1. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TEN PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 10.0D+0 ) COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. LOGICAL LOWER CHARACTER CUPLO INTEGER IINFO, J, JCOL, JR, JROW DOUBLE PRECISION ANORM, ULP, UNFL, WNORM COMPLEX*16 VSAVE * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHE EXTERNAL LSAME, DLAMCH, ZLANGE, ZLANHE * .. * .. External Subroutines .. EXTERNAL ZGEMM, ZHER, ZHER2, ZLACPY, ZLARFY, ZLASET, $ ZUNM2L, ZUNM2R * .. * .. Intrinsic Functions .. INTRINSIC DBLE, DCMPLX, MAX, MIN * .. * .. Executable Statements .. * RESULT( 1 ) = ZERO IF( ITYPE.EQ.1 ) $ RESULT( 2 ) = ZERO IF( N.LE.0 ) $ RETURN * IF( LSAME( UPLO, 'U' ) ) THEN LOWER = .FALSE. CUPLO = 'U' ELSE LOWER = .TRUE. CUPLO = 'L' END IF * UNFL = DLAMCH( 'Safe minimum' ) ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' ) * * Some Error Checks * IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN RESULT( 1 ) = TEN / ULP RETURN END IF * * Do Test 1 * * Norm of A: * IF( ITYPE.EQ.3 ) THEN ANORM = ONE ELSE ANORM = MAX( ZLANHE( '1', CUPLO, N, A, LDA, RWORK ), UNFL ) END IF * * Compute error matrix: * IF( ITYPE.EQ.1 ) THEN * * ITYPE=1: error = A - U S U* * CALL ZLASET( 'Full', N, N, CZERO, CZERO, WORK, N ) CALL ZLACPY( CUPLO, N, N, A, LDA, WORK, N ) * DO 10 J = 1, N CALL ZHER( CUPLO, N, -D( J ), U( 1, J ), 1, WORK, N ) 10 CONTINUE * IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN DO 20 J = 1, N - 1 CALL ZHER2( CUPLO, N, -DCMPLX( E( J ) ), U( 1, J ), 1, $ U( 1, J-1 ), 1, WORK, N ) 20 CONTINUE END IF WNORM = ZLANHE( '1', CUPLO, N, WORK, N, RWORK ) * ELSE IF( ITYPE.EQ.2 ) THEN * * ITYPE=2: error = V S V* - A * CALL ZLASET( 'Full', N, N, CZERO, CZERO, WORK, N ) * IF( LOWER ) THEN WORK( N**2 ) = D( N ) DO 40 J = N - 1, 1, -1 IF( KBAND.EQ.1 ) THEN WORK( ( N+1 )*( J-1 )+2 ) = ( CONE-TAU( J ) )*E( J ) DO 30 JR = J + 2, N WORK( ( J-1 )*N+JR ) = -TAU( J )*E( J )*V( JR, J ) 30 CONTINUE END IF * VSAVE = V( J+1, J ) V( J+1, J ) = ONE CALL ZLARFY( 'L', N-J, V( J+1, J ), 1, TAU( J ), $ WORK( ( N+1 )*J+1 ), N, WORK( N**2+1 ) ) V( J+1, J ) = VSAVE WORK( ( N+1 )*( J-1 )+1 ) = D( J ) 40 CONTINUE ELSE WORK( 1 ) = D( 1 ) DO 60 J = 1, N - 1 IF( KBAND.EQ.1 ) THEN WORK( ( N+1 )*J ) = ( CONE-TAU( J ) )*E( J ) DO 50 JR = 1, J - 1 WORK( J*N+JR ) = -TAU( J )*E( J )*V( JR, J+1 ) 50 CONTINUE END IF * VSAVE = V( J, J+1 ) V( J, J+1 ) = ONE CALL ZLARFY( 'U', J, V( 1, J+1 ), 1, TAU( J ), WORK, N, $ WORK( N**2+1 ) ) V( J, J+1 ) = VSAVE WORK( ( N+1 )*J+1 ) = D( J+1 ) 60 CONTINUE END IF * DO 90 JCOL = 1, N IF( LOWER ) THEN DO 70 JROW = JCOL, N WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) ) $ - A( JROW, JCOL ) 70 CONTINUE ELSE DO 80 JROW = 1, JCOL WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) ) $ - A( JROW, JCOL ) 80 CONTINUE END IF 90 CONTINUE WNORM = ZLANHE( '1', CUPLO, N, WORK, N, RWORK ) * ELSE IF( ITYPE.EQ.3 ) THEN * * ITYPE=3: error = U V* - I * IF( N.LT.2 ) $ RETURN CALL ZLACPY( ' ', N, N, U, LDU, WORK, N ) IF( LOWER ) THEN CALL ZUNM2R( 'R', 'C', N, N-1, N-1, V( 2, 1 ), LDV, TAU, $ WORK( N+1 ), N, WORK( N**2+1 ), IINFO ) ELSE CALL ZUNM2L( 'R', 'C', N, N-1, N-1, V( 1, 2 ), LDV, TAU, $ WORK, N, WORK( N**2+1 ), IINFO ) END IF IF( IINFO.NE.0 ) THEN RESULT( 1 ) = TEN / ULP RETURN END IF * DO 100 J = 1, N WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE 100 CONTINUE * WNORM = ZLANGE( '1', N, N, WORK, N, RWORK ) END IF * IF( ANORM.GT.WNORM ) THEN RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP ) ELSE IF( ANORM.LT.ONE ) THEN RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP ) ELSE RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP ) END IF END IF * * Do Test 2 * * Compute UU* - I * IF( ITYPE.EQ.1 ) THEN CALL ZGEMM( 'N', 'C', N, N, N, CONE, U, LDU, U, LDU, CZERO, $ WORK, N ) * DO 110 J = 1, N WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - CONE 110 CONTINUE * RESULT( 2 ) = MIN( ZLANGE( '1', N, N, WORK, N, RWORK ), $ DBLE( N ) ) / ( N*ULP ) END IF * RETURN * * End of ZHET21 * END |