1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
SUBROUTINE ZSGT01( ITYPE, UPLO, N, M, A, LDA, B, LDB, Z, LDZ, D,
$ WORK, RWORK, RESULT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * modified August 1997, a new parameter M is added to the calling * sequence. * * .. Scalar Arguments .. CHARACTER UPLO INTEGER ITYPE, LDA, LDB, LDZ, M, N * .. * .. Array Arguments .. DOUBLE PRECISION D( * ), RESULT( * ), RWORK( * ) COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ), $ Z( LDZ, * ) * .. * * Purpose * ======= * * CDGT01 checks a decomposition of the form * * A Z = B Z D or * A B Z = Z D or * B A Z = Z D * * where A is a Hermitian matrix, B is Hermitian positive definite, * Z is unitary, and D is diagonal. * * One of the following test ratios is computed: * * ITYPE = 1: RESULT(1) = | A Z - B Z D | / ( |A| |Z| n ulp ) * * ITYPE = 2: RESULT(1) = | A B Z - Z D | / ( |A| |Z| n ulp ) * * ITYPE = 3: RESULT(1) = | B A Z - Z D | / ( |A| |Z| n ulp ) * * Arguments * ========= * * ITYPE (input) INTEGER * The form of the Hermitian generalized eigenproblem. * = 1: A*z = (lambda)*B*z * = 2: A*B*z = (lambda)*z * = 3: B*A*z = (lambda)*z * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * Hermitian matrices A and B is stored. * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The order of the matrix A. N >= 0. * * M (input) INTEGER * The number of eigenvalues found. M >= 0. * * A (input) COMPLEX*16 array, dimension (LDA, N) * The original Hermitian matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * B (input) COMPLEX*16 array, dimension (LDB, N) * The original Hermitian positive definite matrix B. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * Z (input) COMPLEX*16 array, dimension (LDZ, M) * The computed eigenvectors of the generalized eigenproblem. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= max(1,N). * * D (input) DOUBLE PRECISION array, dimension (M) * The computed eigenvalues of the generalized eigenproblem. * * WORK (workspace) COMPLEX*16 array, dimension (N*N) * * RWORK (workspace) DOUBLE PRECISION array, dimension (N) * * RESULT (output) DOUBLE PRECISION array, dimension (1) * The test ratio as described above. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. INTEGER I DOUBLE PRECISION ANORM, ULP * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHE EXTERNAL DLAMCH, ZLANGE, ZLANHE * .. * .. External Subroutines .. EXTERNAL ZDSCAL, ZHEMM * .. * .. Executable Statements .. * RESULT( 1 ) = ZERO IF( N.LE.0 ) $ RETURN * ULP = DLAMCH( 'Epsilon' ) * * Compute product of 1-norms of A and Z. * ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )* $ ZLANGE( '1', N, M, Z, LDZ, RWORK ) IF( ANORM.EQ.ZERO ) $ ANORM = ONE * IF( ITYPE.EQ.1 ) THEN * * Norm of AZ - BZD * CALL ZHEMM( 'Left', UPLO, N, M, CONE, A, LDA, Z, LDZ, CZERO, $ WORK, N ) DO 10 I = 1, M CALL ZDSCAL( N, D( I ), Z( 1, I ), 1 ) 10 CONTINUE CALL ZHEMM( 'Left', UPLO, N, M, CONE, B, LDB, Z, LDZ, -CONE, $ WORK, N ) * RESULT( 1 ) = ( ZLANGE( '1', N, M, WORK, N, RWORK ) / ANORM ) / $ ( N*ULP ) * ELSE IF( ITYPE.EQ.2 ) THEN * * Norm of ABZ - ZD * CALL ZHEMM( 'Left', UPLO, N, M, CONE, B, LDB, Z, LDZ, CZERO, $ WORK, N ) DO 20 I = 1, M CALL ZDSCAL( N, D( I ), Z( 1, I ), 1 ) 20 CONTINUE CALL ZHEMM( 'Left', UPLO, N, M, CONE, A, LDA, WORK, N, -CONE, $ Z, LDZ ) * RESULT( 1 ) = ( ZLANGE( '1', N, M, Z, LDZ, RWORK ) / ANORM ) / $ ( N*ULP ) * ELSE IF( ITYPE.EQ.3 ) THEN * * Norm of BAZ - ZD * CALL ZHEMM( 'Left', UPLO, N, M, CONE, A, LDA, Z, LDZ, CZERO, $ WORK, N ) DO 30 I = 1, M CALL ZDSCAL( N, D( I ), Z( 1, I ), 1 ) 30 CONTINUE CALL ZHEMM( 'Left', UPLO, N, M, CONE, B, LDB, WORK, N, -CONE, $ Z, LDZ ) * RESULT( 1 ) = ( ZLANGE( '1', N, M, Z, LDZ, RWORK ) / ANORM ) / $ ( N*ULP ) END IF * RETURN * * End of CDGT01 * END |