1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
SUBROUTINE DSYT01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
$ RWORK, RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDA, LDAFAC, LDC, N DOUBLE PRECISION RESID * .. * .. Array Arguments .. INTEGER IPIV( * ) DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ), $ RWORK( * ) * .. * * Purpose * ======= * * DSYT01 reconstructs a symmetric indefinite matrix A from its * block L*D*L' or U*D*U' factorization and computes the residual * norm( C - A ) / ( N * norm(A) * EPS ), * where C is the reconstructed matrix and EPS is the machine epsilon. * * Arguments * ========== * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * symmetric matrix A is stored: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The number of rows and columns of the matrix A. N >= 0. * * A (input) DOUBLE PRECISION array, dimension (LDA,N) * The original symmetric matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N) * * AFAC (input) DOUBLE PRECISION array, dimension (LDAFAC,N) * The factored form of the matrix A. AFAC contains the block * diagonal matrix D and the multipliers used to obtain the * factor L or U from the block L*D*L' or U*D*U' factorization * as computed by DSYTRF. * * LDAFAC (input) INTEGER * The leading dimension of the array AFAC. LDAFAC >= max(1,N). * * IPIV (input) INTEGER array, dimension (N) * The pivot indices from DSYTRF. * * C (workspace) DOUBLE PRECISION array, dimension (LDC,N) * * LDC (integer) INTEGER * The leading dimension of the array C. LDC >= max(1,N). * * RWORK (workspace) DOUBLE PRECISION array, dimension (N) * * RESID (output) DOUBLE PRECISION * If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS ) * If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS ) * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) * .. * .. Local Scalars .. INTEGER I, INFO, J DOUBLE PRECISION ANORM, EPS * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, DLANSY EXTERNAL LSAME, DLAMCH, DLANSY * .. * .. External Subroutines .. EXTERNAL DLASET, DLAVSY * .. * .. Intrinsic Functions .. INTRINSIC DBLE * .. * .. Executable Statements .. * * Quick exit if N = 0. * IF( N.LE.0 ) THEN RESID = ZERO RETURN END IF * * Determine EPS and the norm of A. * EPS = DLAMCH( 'Epsilon' ) ANORM = DLANSY( '1', UPLO, N, A, LDA, RWORK ) * * Initialize C to the identity matrix. * CALL DLASET( 'Full', N, N, ZERO, ONE, C, LDC ) * * Call DLAVSY to form the product D * U' (or D * L' ). * CALL DLAVSY( UPLO, 'Transpose', 'Non-unit', N, N, AFAC, LDAFAC, $ IPIV, C, LDC, INFO ) * * Call DLAVSY again to multiply by U (or L ). * CALL DLAVSY( UPLO, 'No transpose', 'Unit', N, N, AFAC, LDAFAC, $ IPIV, C, LDC, INFO ) * * Compute the difference C - A . * IF( LSAME( UPLO, 'U' ) ) THEN DO 20 J = 1, N DO 10 I = 1, J C( I, J ) = C( I, J ) - A( I, J ) 10 CONTINUE 20 CONTINUE ELSE DO 40 J = 1, N DO 30 I = J, N C( I, J ) = C( I, J ) - A( I, J ) 30 CONTINUE 40 CONTINUE END IF * * Compute norm( C - A ) / ( N * norm(A) * EPS ) * RESID = DLANSY( '1', UPLO, N, C, LDC, RWORK ) * IF( ANORM.LE.ZERO ) THEN IF( RESID.NE.ZERO ) $ RESID = ONE / EPS ELSE RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS END IF * RETURN * * End of DSYT01 * END |