1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
SUBROUTINE ZGET01( M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK,
$ RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER LDA, LDAFAC, M, N DOUBLE PRECISION RESID * .. * .. Array Arguments .. INTEGER IPIV( * ) DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ) * .. * * Purpose * ======= * * ZGET01 reconstructs a matrix A from its L*U factorization and * computes the residual * norm(L*U - A) / ( N * norm(A) * EPS ), * where EPS is the machine epsilon. * * Arguments * ========== * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * A (input) COMPLEX*16 array, dimension (LDA,N) * The original M x N matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * AFAC (input/output) COMPLEX*16 array, dimension (LDAFAC,N) * The factored form of the matrix A. AFAC contains the factors * L and U from the L*U factorization as computed by ZGETRF. * Overwritten with the reconstructed matrix, and then with the * difference L*U - A. * * LDAFAC (input) INTEGER * The leading dimension of the array AFAC. LDAFAC >= max(1,M). * * IPIV (input) INTEGER array, dimension (N) * The pivot indices from ZGETRF. * * RWORK (workspace) DOUBLE PRECISION array, dimension (M) * * RESID (output) DOUBLE PRECISION * norm(L*U - A) / ( N * norm(A) * EPS ) * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) COMPLEX*16 CONE PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. INTEGER I, J, K DOUBLE PRECISION ANORM, EPS COMPLEX*16 T * .. * .. External Functions .. DOUBLE PRECISION DLAMCH, ZLANGE COMPLEX*16 ZDOTU EXTERNAL DLAMCH, ZLANGE, ZDOTU * .. * .. External Subroutines .. EXTERNAL ZGEMV, ZLASWP, ZSCAL, ZTRMV * .. * .. Intrinsic Functions .. INTRINSIC DBLE, MIN * .. * .. Executable Statements .. * * Quick exit if M = 0 or N = 0. * IF( M.LE.0 .OR. N.LE.0 ) THEN RESID = ZERO RETURN END IF * * Determine EPS and the norm of A. * EPS = DLAMCH( 'Epsilon' ) ANORM = ZLANGE( '1', M, N, A, LDA, RWORK ) * * Compute the product L*U and overwrite AFAC with the result. * A column at a time of the product is obtained, starting with * column N. * DO 10 K = N, 1, -1 IF( K.GT.M ) THEN CALL ZTRMV( 'Lower', 'No transpose', 'Unit', M, AFAC, $ LDAFAC, AFAC( 1, K ), 1 ) ELSE * * Compute elements (K+1:M,K) * T = AFAC( K, K ) IF( K+1.LE.M ) THEN CALL ZSCAL( M-K, T, AFAC( K+1, K ), 1 ) CALL ZGEMV( 'No transpose', M-K, K-1, CONE, $ AFAC( K+1, 1 ), LDAFAC, AFAC( 1, K ), 1, $ CONE, AFAC( K+1, K ), 1 ) END IF * * Compute the (K,K) element * AFAC( K, K ) = T + ZDOTU( K-1, AFAC( K, 1 ), LDAFAC, $ AFAC( 1, K ), 1 ) * * Compute elements (1:K-1,K) * CALL ZTRMV( 'Lower', 'No transpose', 'Unit', K-1, AFAC, $ LDAFAC, AFAC( 1, K ), 1 ) END IF 10 CONTINUE CALL ZLASWP( N, AFAC, LDAFAC, 1, MIN( M, N ), IPIV, -1 ) * * Compute the difference L*U - A and store in AFAC. * DO 30 J = 1, N DO 20 I = 1, M AFAC( I, J ) = AFAC( I, J ) - A( I, J ) 20 CONTINUE 30 CONTINUE * * Compute norm( L*U - A ) / ( N * norm(A) * EPS ) * RESID = ZLANGE( '1', M, N, AFAC, LDAFAC, RWORK ) * IF( ANORM.LE.ZERO ) THEN IF( RESID.NE.ZERO ) $ RESID = ONE / EPS ELSE RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS END IF * RETURN * * End of ZGET01 * END |