1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
SUBROUTINE ZGET02( TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB,
$ RWORK, RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER TRANS INTEGER LDA, LDB, LDX, M, N, NRHS DOUBLE PRECISION RESID * .. * .. Array Arguments .. DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( LDA, * ), B( LDB, * ), X( LDX, * ) * .. * * Purpose * ======= * * ZGET02 computes the residual for a solution of a system of linear * equations A*x = b or A'*x = b: * RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ), * where EPS is the machine epsilon. * * Arguments * ========= * * TRANS (input) CHARACTER*1 * Specifies the form of the system of equations: * = 'N': A *x = b * = 'T': A^T*x = b, where A^T is the transpose of A * = 'C': A^H*x = b, where A^H is the conjugate transpose of A * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of columns of B, the matrix of right hand sides. * NRHS >= 0. * * A (input) COMPLEX*16 array, dimension (LDA,N) * The original M x N matrix A. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * X (input) COMPLEX*16 array, dimension (LDX,NRHS) * The computed solution vectors for the system of linear * equations. * * LDX (input) INTEGER * The leading dimension of the array X. If TRANS = 'N', * LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M). * * B (input/output) COMPLEX*16 array, dimension (LDB,NRHS) * On entry, the right hand side vectors for the system of * linear equations. * On exit, B is overwritten with the difference B - A*X. * * LDB (input) INTEGER * The leading dimension of the array B. IF TRANS = 'N', * LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N). * * RWORK (workspace) DOUBLE PRECISION array, dimension (M) * * RESID (output) DOUBLE PRECISION * The maximum over the number of right hand sides of * norm(B - A*X) / ( norm(A) * norm(X) * EPS ). * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) COMPLEX*16 CONE PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. INTEGER J, N1, N2 DOUBLE PRECISION ANORM, BNORM, EPS, XNORM * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, DZASUM, ZLANGE EXTERNAL LSAME, DLAMCH, DZASUM, ZLANGE * .. * .. External Subroutines .. EXTERNAL ZGEMM * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Quick exit if M = 0 or N = 0 or NRHS = 0 * IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.EQ.0 ) THEN RESID = ZERO RETURN END IF * IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN N1 = N N2 = M ELSE N1 = M N2 = N END IF * * Exit with RESID = 1/EPS if ANORM = 0. * EPS = DLAMCH( 'Epsilon' ) ANORM = ZLANGE( '1', N1, N2, A, LDA, RWORK ) IF( ANORM.LE.ZERO ) THEN RESID = ONE / EPS RETURN END IF * * Compute B - A*X (or B - A'*X ) and store in B. * CALL ZGEMM( TRANS, 'No transpose', N1, NRHS, N2, -CONE, A, LDA, X, $ LDX, CONE, B, LDB ) * * Compute the maximum over the number of right hand sides of * norm(B - A*X) / ( norm(A) * norm(X) * EPS ) . * RESID = ZERO DO 10 J = 1, NRHS BNORM = DZASUM( N1, B( 1, J ), 1 ) XNORM = DZASUM( N2, X( 1, J ), 1 ) IF( XNORM.LE.ZERO ) THEN RESID = ONE / EPS ELSE RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS ) END IF 10 CONTINUE * RETURN * * End of ZGET02 * END |