1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
SUBROUTINE ZPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
$ RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER LDWORK, N DOUBLE PRECISION RCOND, RESID * .. * .. Array Arguments .. DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( * ), AINV( * ), WORK( LDWORK, * ) * .. * * Purpose * ======= * * ZPPT03 computes the residual for a Hermitian packed matrix times its * inverse: * norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ), * where EPS is the machine epsilon. * * Arguments * ========== * * UPLO (input) CHARACTER*1 * Specifies whether the upper or lower triangular part of the * Hermitian matrix A is stored: * = 'U': Upper triangular * = 'L': Lower triangular * * N (input) INTEGER * The number of rows and columns of the matrix A. N >= 0. * * A (input) COMPLEX*16 array, dimension (N*(N+1)/2) * The original Hermitian matrix A, stored as a packed * triangular matrix. * * AINV (input) COMPLEX*16 array, dimension (N*(N+1)/2) * The (Hermitian) inverse of the matrix A, stored as a packed * triangular matrix. * * WORK (workspace) COMPLEX*16 array, dimension (LDWORK,N) * * LDWORK (input) INTEGER * The leading dimension of the array WORK. LDWORK >= max(1,N). * * RWORK (workspace) DOUBLE PRECISION array, dimension (N) * * RCOND (output) DOUBLE PRECISION * The reciprocal of the condition number of A, computed as * ( 1/norm(A) ) / norm(AINV). * * RESID (output) DOUBLE PRECISION * norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS ) * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. INTEGER I, J, JJ DOUBLE PRECISION AINVNM, ANORM, EPS * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHP EXTERNAL LSAME, DLAMCH, ZLANGE, ZLANHP * .. * .. Intrinsic Functions .. INTRINSIC DBLE, DCONJG * .. * .. External Subroutines .. EXTERNAL ZCOPY, ZHPMV * .. * .. Executable Statements .. * * Quick exit if N = 0. * IF( N.LE.0 ) THEN RCOND = ONE RESID = ZERO RETURN END IF * * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0. * EPS = DLAMCH( 'Epsilon' ) ANORM = ZLANHP( '1', UPLO, N, A, RWORK ) AINVNM = ZLANHP( '1', UPLO, N, AINV, RWORK ) IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN RCOND = ZERO RESID = ONE / EPS RETURN END IF RCOND = ( ONE / ANORM ) / AINVNM * * UPLO = 'U': * Copy the leading N-1 x N-1 submatrix of AINV to WORK(1:N,2:N) and * expand it to a full matrix, then multiply by A one column at a * time, moving the result one column to the left. * IF( LSAME( UPLO, 'U' ) ) THEN * * Copy AINV * JJ = 1 DO 20 J = 1, N - 1 CALL ZCOPY( J, AINV( JJ ), 1, WORK( 1, J+1 ), 1 ) DO 10 I = 1, J - 1 WORK( J, I+1 ) = DCONJG( AINV( JJ+I-1 ) ) 10 CONTINUE JJ = JJ + J 20 CONTINUE JJ = ( ( N-1 )*N ) / 2 + 1 DO 30 I = 1, N - 1 WORK( N, I+1 ) = DCONJG( AINV( JJ+I-1 ) ) 30 CONTINUE * * Multiply by A * DO 40 J = 1, N - 1 CALL ZHPMV( 'Upper', N, -CONE, A, WORK( 1, J+1 ), 1, CZERO, $ WORK( 1, J ), 1 ) 40 CONTINUE CALL ZHPMV( 'Upper', N, -CONE, A, AINV( JJ ), 1, CZERO, $ WORK( 1, N ), 1 ) * * UPLO = 'L': * Copy the trailing N-1 x N-1 submatrix of AINV to WORK(1:N,1:N-1) * and multiply by A, moving each column to the right. * ELSE * * Copy AINV * DO 50 I = 1, N - 1 WORK( 1, I ) = DCONJG( AINV( I+1 ) ) 50 CONTINUE JJ = N + 1 DO 70 J = 2, N CALL ZCOPY( N-J+1, AINV( JJ ), 1, WORK( J, J-1 ), 1 ) DO 60 I = 1, N - J WORK( J, J+I-1 ) = DCONJG( AINV( JJ+I ) ) 60 CONTINUE JJ = JJ + N - J + 1 70 CONTINUE * * Multiply by A * DO 80 J = N, 2, -1 CALL ZHPMV( 'Lower', N, -CONE, A, WORK( 1, J-1 ), 1, CZERO, $ WORK( 1, J ), 1 ) 80 CONTINUE CALL ZHPMV( 'Lower', N, -CONE, A, AINV( 1 ), 1, CZERO, $ WORK( 1, 1 ), 1 ) * END IF * * Add the identity matrix to WORK . * DO 90 I = 1, N WORK( I, I ) = WORK( I, I ) + CONE 90 CONTINUE * * Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS) * RESID = ZLANGE( '1', N, N, WORK, LDWORK, RWORK ) * RESID = ( ( RESID*RCOND ) / EPS ) / DBLE( N ) * RETURN * * End of ZPPT03 * END |