1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
SUBROUTINE ZTRT03( UPLO, TRANS, DIAG, N, NRHS, A, LDA, SCALE,
$ CNORM, TSCAL, X, LDX, B, LDB, WORK, RESID ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER DIAG, TRANS, UPLO INTEGER LDA, LDB, LDX, N, NRHS DOUBLE PRECISION RESID, SCALE, TSCAL * .. * .. Array Arguments .. DOUBLE PRECISION CNORM( * ) COMPLEX*16 A( LDA, * ), B( LDB, * ), WORK( * ), $ X( LDX, * ) * .. * * Purpose * ======= * * ZTRT03 computes the residual for the solution to a scaled triangular * system of equations A*x = s*b, A**T *x = s*b, or A**H *x = s*b. * Here A is a triangular matrix, A**T denotes the transpose of A, A**H * denotes the conjugate transpose of A, s is a scalar, and x and b are * N by NRHS matrices. The test ratio is the maximum over the number of * right hand sides of * norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ), * where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the matrix A is upper or lower triangular. * = 'U': Upper triangular * = 'L': Lower triangular * * TRANS (input) CHARACTER*1 * Specifies the operation applied to A. * = 'N': A *x = s*b (No transpose) * = 'T': A**T *x = s*b (Transpose) * = 'C': A**H *x = s*b (Conjugate transpose) * * DIAG (input) CHARACTER*1 * Specifies whether or not the matrix A is unit triangular. * = 'N': Non-unit triangular * = 'U': Unit triangular * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrices X and B. NRHS >= 0. * * A (input) COMPLEX*16 array, dimension (LDA,N) * The triangular matrix A. If UPLO = 'U', the leading n by n * upper triangular part of the array A contains the upper * triangular matrix, and the strictly lower triangular part of * A is not referenced. If UPLO = 'L', the leading n by n lower * triangular part of the array A contains the lower triangular * matrix, and the strictly upper triangular part of A is not * referenced. If DIAG = 'U', the diagonal elements of A are * also not referenced and are assumed to be 1. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * SCALE (input) DOUBLE PRECISION * The scaling factor s used in solving the triangular system. * * CNORM (input) DOUBLE PRECISION array, dimension (N) * The 1-norms of the columns of A, not counting the diagonal. * * TSCAL (input) DOUBLE PRECISION * The scaling factor used in computing the 1-norms in CNORM. * CNORM actually contains the column norms of TSCAL*A. * * X (input) COMPLEX*16 array, dimension (LDX,NRHS) * The computed solution vectors for the system of linear * equations. * * LDX (input) INTEGER * The leading dimension of the array X. LDX >= max(1,N). * * B (input) COMPLEX*16 array, dimension (LDB,NRHS) * The right hand side vectors for the system of linear * equations. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * WORK (workspace) COMPLEX*16 array, dimension (N) * * RESID (output) DOUBLE PRECISION * The maximum over the number of right hand sides of * norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) * .. * .. Local Scalars .. INTEGER IX, J DOUBLE PRECISION EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL * .. * .. External Functions .. LOGICAL LSAME INTEGER IZAMAX DOUBLE PRECISION DLAMCH EXTERNAL LSAME, IZAMAX, DLAMCH * .. * .. External Subroutines .. EXTERNAL ZAXPY, ZCOPY, ZDSCAL, ZTRMV * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, DCMPLX, MAX * .. * .. Executable Statements .. * * Quick exit if N = 0 * IF( N.LE.0 .OR. NRHS.LE.0 ) THEN RESID = ZERO RETURN END IF EPS = DLAMCH( 'Epsilon' ) SMLNUM = DLAMCH( 'Safe minimum' ) * * Compute the norm of the triangular matrix A using the column * norms already computed by ZLATRS. * TNORM = ZERO IF( LSAME( DIAG, 'N' ) ) THEN DO 10 J = 1, N TNORM = MAX( TNORM, TSCAL*ABS( A( J, J ) )+CNORM( J ) ) 10 CONTINUE ELSE DO 20 J = 1, N TNORM = MAX( TNORM, TSCAL+CNORM( J ) ) 20 CONTINUE END IF * * Compute the maximum over the number of right hand sides of * norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ). * RESID = ZERO DO 30 J = 1, NRHS CALL ZCOPY( N, X( 1, J ), 1, WORK, 1 ) IX = IZAMAX( N, WORK, 1 ) XNORM = MAX( ONE, ABS( X( IX, J ) ) ) XSCAL = ( ONE / XNORM ) / DBLE( N ) CALL ZDSCAL( N, XSCAL, WORK, 1 ) CALL ZTRMV( UPLO, TRANS, DIAG, N, A, LDA, WORK, 1 ) CALL ZAXPY( N, DCMPLX( -SCALE*XSCAL ), B( 1, J ), 1, WORK, 1 ) IX = IZAMAX( N, WORK, 1 ) ERR = TSCAL*ABS( WORK( IX ) ) IX = IZAMAX( N, X( 1, J ), 1 ) XNORM = ABS( X( IX, J ) ) IF( ERR*SMLNUM.LE.XNORM ) THEN IF( XNORM.GT.ZERO ) $ ERR = ERR / XNORM ELSE IF( ERR.GT.ZERO ) $ ERR = ONE / EPS END IF IF( ERR*SMLNUM.LE.TNORM ) THEN IF( TNORM.GT.ZERO ) $ ERR = ERR / TNORM ELSE IF( ERR.GT.ZERO ) $ ERR = ONE / EPS END IF RESID = MAX( RESID, ERR ) 30 CONTINUE * RETURN * * End of ZTRT03 * END |