ZTRT03
   Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
November 2006
November 2006
Purpose
ZTRT03 computes the residual for the solution to a scaled triangular
system of equations A*x = s*b, A**T *x = s*b, or A**H *x = s*b.
Here A is a triangular matrix, A**T denotes the transpose of A, A**H
denotes the conjugate transpose of A, s is a scalar, and x and b are
N by NRHS matrices. The test ratio is the maximum over the number of
right hand sides of
norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon.
system of equations A*x = s*b, A**T *x = s*b, or A**H *x = s*b.
Here A is a triangular matrix, A**T denotes the transpose of A, A**H
denotes the conjugate transpose of A, s is a scalar, and x and b are
N by NRHS matrices. The test ratio is the maximum over the number of
right hand sides of
norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon.
Arguments
| UPLO | 
 
(input) CHARACTER*1
 
Specifies whether the matrix A is upper or lower triangular. 
= 'U': Upper triangular = 'L': Lower triangular  | 
| TRANS | 
 
(input) CHARACTER*1
 
Specifies the operation applied to A. 
= 'N': A *x = s*b (No transpose) = 'T': A**T *x = s*b (Transpose) = 'C': A**H *x = s*b (Conjugate transpose)  | 
| DIAG | 
 
(input) CHARACTER*1
 
Specifies whether or not the matrix A is unit triangular. 
= 'N': Non-unit triangular = 'U': Unit triangular  | 
| N | 
 
(input) INTEGER
 
The order of the matrix A.  N >= 0. 
 | 
| NRHS | 
 
(input) INTEGER
 
The number of right hand sides, i.e., the number of columns 
of the matrices X and B. NRHS >= 0.  | 
| A | 
 
(input) COMPLEX*16 array, dimension (LDA,N)
 
The triangular matrix A.  If UPLO = 'U', the leading n by n 
upper triangular part of the array A contains the upper triangular matrix, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading n by n lower triangular part of the array A contains the lower triangular matrix, and the strictly upper triangular part of A is not referenced. If DIAG = 'U', the diagonal elements of A are also not referenced and are assumed to be 1.  | 
| LDA | 
 
(input) INTEGER
 
The leading dimension of the array A.  LDA >= max(1,N). 
 | 
| SCALE | 
 
(input) DOUBLE PRECISION
 
The scaling factor s used in solving the triangular system. 
 | 
| CNORM | 
 
(input) DOUBLE PRECISION array, dimension (N)
 
The 1-norms of the columns of A, not counting the diagonal. 
 | 
| TSCAL | 
 
(input) DOUBLE PRECISION
 
The scaling factor used in computing the 1-norms in CNORM. 
CNORM actually contains the column norms of TSCAL*A.  | 
| X | 
 
(input) COMPLEX*16 array, dimension (LDX,NRHS)
 
The computed solution vectors for the system of linear 
equations.  | 
| LDX | 
 
(input) INTEGER
 
The leading dimension of the array X.  LDX >= max(1,N). 
 | 
| B | 
 
(input) COMPLEX*16 array, dimension (LDB,NRHS)
 
The right hand side vectors for the system of linear 
equations.  | 
| LDB | 
 
(input) INTEGER
 
The leading dimension of the array B.  LDB >= max(1,N). 
 | 
| WORK | 
 
(workspace) COMPLEX*16 array, dimension (N)
 
 | 
| RESID | 
 
(output) DOUBLE PRECISION
 
The maximum over the number of right hand sides of 
norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).  |