1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 |
SUBROUTINE DLATMR( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX,
$ RSIGN, GRADE, DL, MODEL, CONDL, DR, MODER, $ CONDR, PIVTNG, IPIVOT, KL, KU, SPARSE, ANORM, $ PACK, A, LDA, IWORK, INFO ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * June 2010 * * .. Scalar Arguments .. CHARACTER DIST, GRADE, PACK, PIVTNG, RSIGN, SYM INTEGER INFO, KL, KU, LDA, M, MODE, MODEL, MODER, N DOUBLE PRECISION ANORM, COND, CONDL, CONDR, DMAX, SPARSE * .. * .. Array Arguments .. INTEGER IPIVOT( * ), ISEED( 4 ), IWORK( * ) DOUBLE PRECISION A( LDA, * ), D( * ), DL( * ), DR( * ) * .. * * Purpose * ======= * * DLATMR generates random matrices of various types for testing * LAPACK programs. * * DLATMR operates by applying the following sequence of * operations: * * Generate a matrix A with random entries of distribution DIST * which is symmetric if SYM='S', and nonsymmetric * if SYM='N'. * * Set the diagonal to D, where D may be input or * computed according to MODE, COND, DMAX and RSIGN * as described below. * * Grade the matrix, if desired, from the left and/or right * as specified by GRADE. The inputs DL, MODEL, CONDL, DR, * MODER and CONDR also determine the grading as described * below. * * Permute, if desired, the rows and/or columns as specified by * PIVTNG and IPIVOT. * * Set random entries to zero, if desired, to get a random sparse * matrix as specified by SPARSE. * * Make A a band matrix, if desired, by zeroing out the matrix * outside a band of lower bandwidth KL and upper bandwidth KU. * * Scale A, if desired, to have maximum entry ANORM. * * Pack the matrix if desired. Options specified by PACK are: * no packing * zero out upper half (if symmetric) * zero out lower half (if symmetric) * store the upper half columnwise (if symmetric or * square upper triangular) * store the lower half columnwise (if symmetric or * square lower triangular) * same as upper half rowwise if symmetric * store the lower triangle in banded format (if symmetric) * store the upper triangle in banded format (if symmetric) * store the entire matrix in banded format * * Note: If two calls to DLATMR differ only in the PACK parameter, * they will generate mathematically equivalent matrices. * * If two calls to DLATMR both have full bandwidth (KL = M-1 * and KU = N-1), and differ only in the PIVTNG and PACK * parameters, then the matrices generated will differ only * in the order of the rows and/or columns, and otherwise * contain the same data. This consistency cannot be and * is not maintained with less than full bandwidth. * * Arguments * ========= * * M (input) INTEGER * Number of rows of A. Not modified. * * N (input) INTEGER * Number of columns of A. Not modified. * * DIST (input) CHARACTER*1 * On entry, DIST specifies the type of distribution to be used * to generate a random matrix . * 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform ) * 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric ) * 'N' => NORMAL( 0, 1 ) ( 'N' for normal ) * Not modified. * * ISEED (input/output) INTEGER array, dimension (4) * On entry ISEED specifies the seed of the random number * generator. They should lie between 0 and 4095 inclusive, * and ISEED(4) should be odd. The random number generator * uses a linear congruential sequence limited to small * integers, and so should produce machine independent * random numbers. The values of ISEED are changed on * exit, and can be used in the next call to DLATMR * to continue the same random number sequence. * Changed on exit. * * SYM (input) CHARACTER*1 * If SYM='S' or 'H', generated matrix is symmetric. * If SYM='N', generated matrix is nonsymmetric. * Not modified. * * D (input/output) DOUBLE PRECISION array, dimension (min(M,N)) * On entry this array specifies the diagonal entries * of the diagonal of A. D may either be specified * on entry, or set according to MODE and COND as described * below. May be changed on exit if MODE is nonzero. * * MODE (input) INTEGER * On entry describes how D is to be used: * MODE = 0 means use D as input * MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND * MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND * MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) * MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) * MODE = 5 sets D to random numbers in the range * ( 1/COND , 1 ) such that their logarithms * are uniformly distributed. * MODE = 6 set D to random numbers from same distribution * as the rest of the matrix. * MODE < 0 has the same meaning as ABS(MODE), except that * the order of the elements of D is reversed. * Thus if MODE is positive, D has entries ranging from * 1 to 1/COND, if negative, from 1/COND to 1, * Not modified. * * COND (input) DOUBLE PRECISION * On entry, used as described under MODE above. * If used, it must be >= 1. Not modified. * * DMAX (input) DOUBLE PRECISION * If MODE neither -6, 0 nor 6, the diagonal is scaled by * DMAX / max(abs(D(i))), so that maximum absolute entry * of diagonal is abs(DMAX). If DMAX is negative (or zero), * diagonal will be scaled by a negative number (or zero). * * RSIGN (input) CHARACTER*1 * If MODE neither -6, 0 nor 6, specifies sign of diagonal * as follows: * 'T' => diagonal entries are multiplied by 1 or -1 * with probability .5 * 'F' => diagonal unchanged * Not modified. * * GRADE (input) CHARACTER*1 * Specifies grading of matrix as follows: * 'N' => no grading * 'L' => matrix premultiplied by diag( DL ) * (only if matrix nonsymmetric) * 'R' => matrix postmultiplied by diag( DR ) * (only if matrix nonsymmetric) * 'B' => matrix premultiplied by diag( DL ) and * postmultiplied by diag( DR ) * (only if matrix nonsymmetric) * 'S' or 'H' => matrix premultiplied by diag( DL ) and * postmultiplied by diag( DL ) * ('S' for symmetric, or 'H' for Hermitian) * 'E' => matrix premultiplied by diag( DL ) and * postmultiplied by inv( diag( DL ) ) * ( 'E' for eigenvalue invariance) * (only if matrix nonsymmetric) * Note: if GRADE='E', then M must equal N. * Not modified. * * DL (input/output) DOUBLE PRECISION array, dimension (M) * If MODEL=0, then on entry this array specifies the diagonal * entries of a diagonal matrix used as described under GRADE * above. If MODEL is not zero, then DL will be set according * to MODEL and CONDL, analogous to the way D is set according * to MODE and COND (except there is no DMAX parameter for DL). * If GRADE='E', then DL cannot have zero entries. * Not referenced if GRADE = 'N' or 'R'. Changed on exit. * * MODEL (input) INTEGER * This specifies how the diagonal array DL is to be computed, * just as MODE specifies how D is to be computed. * Not modified. * * CONDL (input) DOUBLE PRECISION * When MODEL is not zero, this specifies the condition number * of the computed DL. Not modified. * * DR (input/output) DOUBLE PRECISION array, dimension (N) * If MODER=0, then on entry this array specifies the diagonal * entries of a diagonal matrix used as described under GRADE * above. If MODER is not zero, then DR will be set according * to MODER and CONDR, analogous to the way D is set according * to MODE and COND (except there is no DMAX parameter for DR). * Not referenced if GRADE = 'N', 'L', 'H', 'S' or 'E'. * Changed on exit. * * MODER (input) INTEGER * This specifies how the diagonal array DR is to be computed, * just as MODE specifies how D is to be computed. * Not modified. * * CONDR (input) DOUBLE PRECISION * When MODER is not zero, this specifies the condition number * of the computed DR. Not modified. * * PIVTNG (input) CHARACTER*1 * On entry specifies pivoting permutations as follows: * 'N' or ' ' => none. * 'L' => left or row pivoting (matrix must be nonsymmetric). * 'R' => right or column pivoting (matrix must be * nonsymmetric). * 'B' or 'F' => both or full pivoting, i.e., on both sides. * In this case, M must equal N * * If two calls to DLATMR both have full bandwidth (KL = M-1 * and KU = N-1), and differ only in the PIVTNG and PACK * parameters, then the matrices generated will differ only * in the order of the rows and/or columns, and otherwise * contain the same data. This consistency cannot be * maintained with less than full bandwidth. * * IPIVOT (input) INTEGER array, dimension (N or M) * This array specifies the permutation used. After the * basic matrix is generated, the rows, columns, or both * are permuted. If, say, row pivoting is selected, DLATMR * starts with the *last* row and interchanges the M-th and * IPIVOT(M)-th rows, then moves to the next-to-last row, * interchanging the (M-1)-th and the IPIVOT(M-1)-th rows, * and so on. In terms of "2-cycles", the permutation is * (1 IPIVOT(1)) (2 IPIVOT(2)) ... (M IPIVOT(M)) * where the rightmost cycle is applied first. This is the * *inverse* of the effect of pivoting in LINPACK. The idea * is that factoring (with pivoting) an identity matrix * which has been inverse-pivoted in this way should * result in a pivot vector identical to IPIVOT. * Not referenced if PIVTNG = 'N'. Not modified. * * SPARSE (input) DOUBLE PRECISION * On entry specifies the sparsity of the matrix if a sparse * matrix is to be generated. SPARSE should lie between * 0 and 1. To generate a sparse matrix, for each matrix entry * a uniform ( 0, 1 ) random number x is generated and * compared to SPARSE; if x is larger the matrix entry * is unchanged and if x is smaller the entry is set * to zero. Thus on the average a fraction SPARSE of the * entries will be set to zero. * Not modified. * * KL (input) INTEGER * On entry specifies the lower bandwidth of the matrix. For * example, KL=0 implies upper triangular, KL=1 implies upper * Hessenberg, and KL at least M-1 implies the matrix is not * banded. Must equal KU if matrix is symmetric. * Not modified. * * KU (input) INTEGER * On entry specifies the upper bandwidth of the matrix. For * example, KU=0 implies lower triangular, KU=1 implies lower * Hessenberg, and KU at least N-1 implies the matrix is not * banded. Must equal KL if matrix is symmetric. * Not modified. * * ANORM (input) DOUBLE PRECISION * On entry specifies maximum entry of output matrix * (output matrix will by multiplied by a constant so that * its largest absolute entry equal ANORM) * if ANORM is nonnegative. If ANORM is negative no scaling * is done. Not modified. * * PACK (input) CHARACTER*1 * On entry specifies packing of matrix as follows: * 'N' => no packing * 'U' => zero out all subdiagonal entries (if symmetric) * 'L' => zero out all superdiagonal entries (if symmetric) * 'C' => store the upper triangle columnwise * (only if matrix symmetric or square upper triangular) * 'R' => store the lower triangle columnwise * (only if matrix symmetric or square lower triangular) * (same as upper half rowwise if symmetric) * 'B' => store the lower triangle in band storage scheme * (only if matrix symmetric) * 'Q' => store the upper triangle in band storage scheme * (only if matrix symmetric) * 'Z' => store the entire matrix in band storage scheme * (pivoting can be provided for by using this * option to store A in the trailing rows of * the allocated storage) * * Using these options, the various LAPACK packed and banded * storage schemes can be obtained: * GB - use 'Z' * PB, SB or TB - use 'B' or 'Q' * PP, SP or TP - use 'C' or 'R' * * If two calls to DLATMR differ only in the PACK parameter, * they will generate mathematically equivalent matrices. * Not modified. * * A (output) DOUBLE PRECISION array, dimension (LDA,N) * On exit A is the desired test matrix. Only those * entries of A which are significant on output * will be referenced (even if A is in packed or band * storage format). The 'unoccupied corners' of A in * band format will be zeroed out. * * LDA (input) INTEGER * on entry LDA specifies the first dimension of A as * declared in the calling program. * If PACK='N', 'U' or 'L', LDA must be at least max ( 1, M ). * If PACK='C' or 'R', LDA must be at least 1. * If PACK='B', or 'Q', LDA must be MIN ( KU+1, N ) * If PACK='Z', LDA must be at least KUU+KLL+1, where * KUU = MIN ( KU, N-1 ) and KLL = MIN ( KL, N-1 ) * Not modified. * * IWORK (workspace) INTEGER array, dimension ( N or M) * Workspace. Not referenced if PIVTNG = 'N'. Changed on exit. * * INFO (output) INTEGER * Error parameter on exit: * 0 => normal return * -1 => M negative or unequal to N and SYM='S' or 'H' * -2 => N negative * -3 => DIST illegal string * -5 => SYM illegal string * -7 => MODE not in range -6 to 6 * -8 => COND less than 1.0, and MODE neither -6, 0 nor 6 * -10 => MODE neither -6, 0 nor 6 and RSIGN illegal string * -11 => GRADE illegal string, or GRADE='E' and * M not equal to N, or GRADE='L', 'R', 'B' or 'E' and * SYM = 'S' or 'H' * -12 => GRADE = 'E' and DL contains zero * -13 => MODEL not in range -6 to 6 and GRADE= 'L', 'B', 'H', * 'S' or 'E' * -14 => CONDL less than 1.0, GRADE='L', 'B', 'H', 'S' or 'E', * and MODEL neither -6, 0 nor 6 * -16 => MODER not in range -6 to 6 and GRADE= 'R' or 'B' * -17 => CONDR less than 1.0, GRADE='R' or 'B', and * MODER neither -6, 0 nor 6 * -18 => PIVTNG illegal string, or PIVTNG='B' or 'F' and * M not equal to N, or PIVTNG='L' or 'R' and SYM='S' * or 'H' * -19 => IPIVOT contains out of range number and * PIVTNG not equal to 'N' * -20 => KL negative * -21 => KU negative, or SYM='S' or 'H' and KU not equal to KL * -22 => SPARSE not in range 0. to 1. * -24 => PACK illegal string, or PACK='U', 'L', 'B' or 'Q' * and SYM='N', or PACK='C' and SYM='N' and either KL * not equal to 0 or N not equal to M, or PACK='R' and * SYM='N', and either KU not equal to 0 or N not equal * to M * -26 => LDA too small * 1 => Error return from DLATM1 (computing D) * 2 => Cannot scale diagonal to DMAX (max. entry is 0) * 3 => Error return from DLATM1 (computing DL) * 4 => Error return from DLATM1 (computing DR) * 5 => ANORM is positive, but matrix constructed prior to * attempting to scale it to have norm ANORM, is zero * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) DOUBLE PRECISION ONE PARAMETER ( ONE = 1.0D0 ) * .. * .. Local Scalars .. LOGICAL BADPVT, DZERO, FULBND INTEGER I, IDIST, IGRADE, IISUB, IPACK, IPVTNG, IRSIGN, $ ISUB, ISYM, J, JJSUB, JSUB, K, KLL, KUU, MNMIN, $ MNSUB, MXSUB, NPVTS DOUBLE PRECISION ALPHA, ONORM, TEMP * .. * .. Local Arrays .. DOUBLE PRECISION TEMPA( 1 ) * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLANGB, DLANGE, DLANSB, DLANSP, DLANSY, DLATM2, $ DLATM3 EXTERNAL LSAME, DLANGB, DLANGE, DLANSB, DLANSP, DLANSY, $ DLATM2, DLATM3 * .. * .. External Subroutines .. EXTERNAL DLATM1, DSCAL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, MOD * .. * .. Executable Statements .. * * 1) Decode and Test the input parameters. * Initialize flags & seed. * INFO = 0 * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 ) $ RETURN * * Decode DIST * IF( LSAME( DIST, 'U' ) ) THEN IDIST = 1 ELSE IF( LSAME( DIST, 'S' ) ) THEN IDIST = 2 ELSE IF( LSAME( DIST, 'N' ) ) THEN IDIST = 3 ELSE IDIST = -1 END IF * * Decode SYM * IF( LSAME( SYM, 'S' ) ) THEN ISYM = 0 ELSE IF( LSAME( SYM, 'N' ) ) THEN ISYM = 1 ELSE IF( LSAME( SYM, 'H' ) ) THEN ISYM = 0 ELSE ISYM = -1 END IF * * Decode RSIGN * IF( LSAME( RSIGN, 'F' ) ) THEN IRSIGN = 0 ELSE IF( LSAME( RSIGN, 'T' ) ) THEN IRSIGN = 1 ELSE IRSIGN = -1 END IF * * Decode PIVTNG * IF( LSAME( PIVTNG, 'N' ) ) THEN IPVTNG = 0 ELSE IF( LSAME( PIVTNG, ' ' ) ) THEN IPVTNG = 0 ELSE IF( LSAME( PIVTNG, 'L' ) ) THEN IPVTNG = 1 NPVTS = M ELSE IF( LSAME( PIVTNG, 'R' ) ) THEN IPVTNG = 2 NPVTS = N ELSE IF( LSAME( PIVTNG, 'B' ) ) THEN IPVTNG = 3 NPVTS = MIN( N, M ) ELSE IF( LSAME( PIVTNG, 'F' ) ) THEN IPVTNG = 3 NPVTS = MIN( N, M ) ELSE IPVTNG = -1 END IF * * Decode GRADE * IF( LSAME( GRADE, 'N' ) ) THEN IGRADE = 0 ELSE IF( LSAME( GRADE, 'L' ) ) THEN IGRADE = 1 ELSE IF( LSAME( GRADE, 'R' ) ) THEN IGRADE = 2 ELSE IF( LSAME( GRADE, 'B' ) ) THEN IGRADE = 3 ELSE IF( LSAME( GRADE, 'E' ) ) THEN IGRADE = 4 ELSE IF( LSAME( GRADE, 'H' ) .OR. LSAME( GRADE, 'S' ) ) THEN IGRADE = 5 ELSE IGRADE = -1 END IF * * Decode PACK * IF( LSAME( PACK, 'N' ) ) THEN IPACK = 0 ELSE IF( LSAME( PACK, 'U' ) ) THEN IPACK = 1 ELSE IF( LSAME( PACK, 'L' ) ) THEN IPACK = 2 ELSE IF( LSAME( PACK, 'C' ) ) THEN IPACK = 3 ELSE IF( LSAME( PACK, 'R' ) ) THEN IPACK = 4 ELSE IF( LSAME( PACK, 'B' ) ) THEN IPACK = 5 ELSE IF( LSAME( PACK, 'Q' ) ) THEN IPACK = 6 ELSE IF( LSAME( PACK, 'Z' ) ) THEN IPACK = 7 ELSE IPACK = -1 END IF * * Set certain internal parameters * MNMIN = MIN( M, N ) KLL = MIN( KL, M-1 ) KUU = MIN( KU, N-1 ) * * If inv(DL) is used, check to see if DL has a zero entry. * DZERO = .FALSE. IF( IGRADE.EQ.4 .AND. MODEL.EQ.0 ) THEN DO 10 I = 1, M IF( DL( I ).EQ.ZERO ) $ DZERO = .TRUE. 10 CONTINUE END IF * * Check values in IPIVOT * BADPVT = .FALSE. IF( IPVTNG.GT.0 ) THEN DO 20 J = 1, NPVTS IF( IPIVOT( J ).LE.0 .OR. IPIVOT( J ).GT.NPVTS ) $ BADPVT = .TRUE. 20 CONTINUE END IF * * Set INFO if an error * IF( M.LT.0 ) THEN INFO = -1 ELSE IF( M.NE.N .AND. ISYM.EQ.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( IDIST.EQ.-1 ) THEN INFO = -3 ELSE IF( ISYM.EQ.-1 ) THEN INFO = -5 ELSE IF( MODE.LT.-6 .OR. MODE.GT.6 ) THEN INFO = -7 ELSE IF( ( MODE.NE.-6 .AND. MODE.NE.0 .AND. MODE.NE.6 ) .AND. $ COND.LT.ONE ) THEN INFO = -8 ELSE IF( ( MODE.NE.-6 .AND. MODE.NE.0 .AND. MODE.NE.6 ) .AND. $ IRSIGN.EQ.-1 ) THEN INFO = -10 ELSE IF( IGRADE.EQ.-1 .OR. ( IGRADE.EQ.4 .AND. M.NE.N ) .OR. $ ( ( IGRADE.GE.1 .AND. IGRADE.LE.4 ) .AND. ISYM.EQ.0 ) ) $ THEN INFO = -11 ELSE IF( IGRADE.EQ.4 .AND. DZERO ) THEN INFO = -12 ELSE IF( ( IGRADE.EQ.1 .OR. IGRADE.EQ.3 .OR. IGRADE.EQ.4 .OR. $ IGRADE.EQ.5 ) .AND. ( MODEL.LT.-6 .OR. MODEL.GT.6 ) ) $ THEN INFO = -13 ELSE IF( ( IGRADE.EQ.1 .OR. IGRADE.EQ.3 .OR. IGRADE.EQ.4 .OR. $ IGRADE.EQ.5 ) .AND. ( MODEL.NE.-6 .AND. MODEL.NE.0 .AND. $ MODEL.NE.6 ) .AND. CONDL.LT.ONE ) THEN INFO = -14 ELSE IF( ( IGRADE.EQ.2 .OR. IGRADE.EQ.3 ) .AND. $ ( MODER.LT.-6 .OR. MODER.GT.6 ) ) THEN INFO = -16 ELSE IF( ( IGRADE.EQ.2 .OR. IGRADE.EQ.3 ) .AND. $ ( MODER.NE.-6 .AND. MODER.NE.0 .AND. MODER.NE.6 ) .AND. $ CONDR.LT.ONE ) THEN INFO = -17 ELSE IF( IPVTNG.EQ.-1 .OR. ( IPVTNG.EQ.3 .AND. M.NE.N ) .OR. $ ( ( IPVTNG.EQ.1 .OR. IPVTNG.EQ.2 ) .AND. ISYM.EQ.0 ) ) $ THEN INFO = -18 ELSE IF( IPVTNG.NE.0 .AND. BADPVT ) THEN INFO = -19 ELSE IF( KL.LT.0 ) THEN INFO = -20 ELSE IF( KU.LT.0 .OR. ( ISYM.EQ.0 .AND. KL.NE.KU ) ) THEN INFO = -21 ELSE IF( SPARSE.LT.ZERO .OR. SPARSE.GT.ONE ) THEN INFO = -22 ELSE IF( IPACK.EQ.-1 .OR. ( ( IPACK.EQ.1 .OR. IPACK.EQ.2 .OR. $ IPACK.EQ.5 .OR. IPACK.EQ.6 ) .AND. ISYM.EQ.1 ) .OR. $ ( IPACK.EQ.3 .AND. ISYM.EQ.1 .AND. ( KL.NE.0 .OR. M.NE. $ N ) ) .OR. ( IPACK.EQ.4 .AND. ISYM.EQ.1 .AND. ( KU.NE. $ 0 .OR. M.NE.N ) ) ) THEN INFO = -24 ELSE IF( ( ( IPACK.EQ.0 .OR. IPACK.EQ.1 .OR. IPACK.EQ.2 ) .AND. $ LDA.LT.MAX( 1, M ) ) .OR. ( ( IPACK.EQ.3 .OR. IPACK.EQ. $ 4 ) .AND. LDA.LT.1 ) .OR. ( ( IPACK.EQ.5 .OR. IPACK.EQ. $ 6 ) .AND. LDA.LT.KUU+1 ) .OR. $ ( IPACK.EQ.7 .AND. LDA.LT.KLL+KUU+1 ) ) THEN INFO = -26 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLATMR', -INFO ) RETURN END IF * * Decide if we can pivot consistently * FULBND = .FALSE. IF( KUU.EQ.N-1 .AND. KLL.EQ.M-1 ) $ FULBND = .TRUE. * * Initialize random number generator * DO 30 I = 1, 4 ISEED( I ) = MOD( ABS( ISEED( I ) ), 4096 ) 30 CONTINUE * ISEED( 4 ) = 2*( ISEED( 4 ) / 2 ) + 1 * * 2) Set up D, DL, and DR, if indicated. * * Compute D according to COND and MODE * CALL DLATM1( MODE, COND, IRSIGN, IDIST, ISEED, D, MNMIN, INFO ) IF( INFO.NE.0 ) THEN INFO = 1 RETURN END IF IF( MODE.NE.0 .AND. MODE.NE.-6 .AND. MODE.NE.6 ) THEN * * Scale by DMAX * TEMP = ABS( D( 1 ) ) DO 40 I = 2, MNMIN TEMP = MAX( TEMP, ABS( D( I ) ) ) 40 CONTINUE IF( TEMP.EQ.ZERO .AND. DMAX.NE.ZERO ) THEN INFO = 2 RETURN END IF IF( TEMP.NE.ZERO ) THEN ALPHA = DMAX / TEMP ELSE ALPHA = ONE END IF DO 50 I = 1, MNMIN D( I ) = ALPHA*D( I ) 50 CONTINUE * END IF * * Compute DL if grading set * IF( IGRADE.EQ.1 .OR. IGRADE.EQ.3 .OR. IGRADE.EQ.4 .OR. IGRADE.EQ. $ 5 ) THEN CALL DLATM1( MODEL, CONDL, 0, IDIST, ISEED, DL, M, INFO ) IF( INFO.NE.0 ) THEN INFO = 3 RETURN END IF END IF * * Compute DR if grading set * IF( IGRADE.EQ.2 .OR. IGRADE.EQ.3 ) THEN CALL DLATM1( MODER, CONDR, 0, IDIST, ISEED, DR, N, INFO ) IF( INFO.NE.0 ) THEN INFO = 4 RETURN END IF END IF * * 3) Generate IWORK if pivoting * IF( IPVTNG.GT.0 ) THEN DO 60 I = 1, NPVTS IWORK( I ) = I 60 CONTINUE IF( FULBND ) THEN DO 70 I = 1, NPVTS K = IPIVOT( I ) J = IWORK( I ) IWORK( I ) = IWORK( K ) IWORK( K ) = J 70 CONTINUE ELSE DO 80 I = NPVTS, 1, -1 K = IPIVOT( I ) J = IWORK( I ) IWORK( I ) = IWORK( K ) IWORK( K ) = J 80 CONTINUE END IF END IF * * 4) Generate matrices for each kind of PACKing * Always sweep matrix columnwise (if symmetric, upper * half only) so that matrix generated does not depend * on PACK * IF( FULBND ) THEN * * Use DLATM3 so matrices generated with differing PIVOTing only * differ only in the order of their rows and/or columns. * IF( IPACK.EQ.0 ) THEN IF( ISYM.EQ.0 ) THEN DO 100 J = 1, N DO 90 I = 1, J TEMP = DLATM3( M, N, I, J, ISUB, JSUB, KL, KU, $ IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG, $ IWORK, SPARSE ) A( ISUB, JSUB ) = TEMP A( JSUB, ISUB ) = TEMP 90 CONTINUE 100 CONTINUE ELSE IF( ISYM.EQ.1 ) THEN DO 120 J = 1, N DO 110 I = 1, M TEMP = DLATM3( M, N, I, J, ISUB, JSUB, KL, KU, $ IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG, $ IWORK, SPARSE ) A( ISUB, JSUB ) = TEMP 110 CONTINUE 120 CONTINUE END IF * ELSE IF( IPACK.EQ.1 ) THEN * DO 140 J = 1, N DO 130 I = 1, J TEMP = DLATM3( M, N, I, J, ISUB, JSUB, KL, KU, IDIST, $ ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK, $ SPARSE ) MNSUB = MIN( ISUB, JSUB ) MXSUB = MAX( ISUB, JSUB ) A( MNSUB, MXSUB ) = TEMP IF( MNSUB.NE.MXSUB ) $ A( MXSUB, MNSUB ) = ZERO 130 CONTINUE 140 CONTINUE * ELSE IF( IPACK.EQ.2 ) THEN * DO 160 J = 1, N DO 150 I = 1, J TEMP = DLATM3( M, N, I, J, ISUB, JSUB, KL, KU, IDIST, $ ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK, $ SPARSE ) MNSUB = MIN( ISUB, JSUB ) MXSUB = MAX( ISUB, JSUB ) A( MXSUB, MNSUB ) = TEMP IF( MNSUB.NE.MXSUB ) $ A( MNSUB, MXSUB ) = ZERO 150 CONTINUE 160 CONTINUE * ELSE IF( IPACK.EQ.3 ) THEN * DO 180 J = 1, N DO 170 I = 1, J TEMP = DLATM3( M, N, I, J, ISUB, JSUB, KL, KU, IDIST, $ ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK, $ SPARSE ) * * Compute K = location of (ISUB,JSUB) entry in packed * array * MNSUB = MIN( ISUB, JSUB ) MXSUB = MAX( ISUB, JSUB ) K = MXSUB*( MXSUB-1 ) / 2 + MNSUB * * Convert K to (IISUB,JJSUB) location * JJSUB = ( K-1 ) / LDA + 1 IISUB = K - LDA*( JJSUB-1 ) * A( IISUB, JJSUB ) = TEMP 170 CONTINUE 180 CONTINUE * ELSE IF( IPACK.EQ.4 ) THEN * DO 200 J = 1, N DO 190 I = 1, J TEMP = DLATM3( M, N, I, J, ISUB, JSUB, KL, KU, IDIST, $ ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK, $ SPARSE ) * * Compute K = location of (I,J) entry in packed array * MNSUB = MIN( ISUB, JSUB ) MXSUB = MAX( ISUB, JSUB ) IF( MNSUB.EQ.1 ) THEN K = MXSUB ELSE K = N*( N+1 ) / 2 - ( N-MNSUB+1 )*( N-MNSUB+2 ) / $ 2 + MXSUB - MNSUB + 1 END IF * * Convert K to (IISUB,JJSUB) location * JJSUB = ( K-1 ) / LDA + 1 IISUB = K - LDA*( JJSUB-1 ) * A( IISUB, JJSUB ) = TEMP 190 CONTINUE 200 CONTINUE * ELSE IF( IPACK.EQ.5 ) THEN * DO 220 J = 1, N DO 210 I = J - KUU, J IF( I.LT.1 ) THEN A( J-I+1, I+N ) = ZERO ELSE TEMP = DLATM3( M, N, I, J, ISUB, JSUB, KL, KU, $ IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG, $ IWORK, SPARSE ) MNSUB = MIN( ISUB, JSUB ) MXSUB = MAX( ISUB, JSUB ) A( MXSUB-MNSUB+1, MNSUB ) = TEMP END IF 210 CONTINUE 220 CONTINUE * ELSE IF( IPACK.EQ.6 ) THEN * DO 240 J = 1, N DO 230 I = J - KUU, J TEMP = DLATM3( M, N, I, J, ISUB, JSUB, KL, KU, IDIST, $ ISEED, D, IGRADE, DL, DR, IPVTNG, IWORK, $ SPARSE ) MNSUB = MIN( ISUB, JSUB ) MXSUB = MAX( ISUB, JSUB ) A( MNSUB-MXSUB+KUU+1, MXSUB ) = TEMP 230 CONTINUE 240 CONTINUE * ELSE IF( IPACK.EQ.7 ) THEN * IF( ISYM.EQ.0 ) THEN DO 260 J = 1, N DO 250 I = J - KUU, J TEMP = DLATM3( M, N, I, J, ISUB, JSUB, KL, KU, $ IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG, $ IWORK, SPARSE ) MNSUB = MIN( ISUB, JSUB ) MXSUB = MAX( ISUB, JSUB ) A( MNSUB-MXSUB+KUU+1, MXSUB ) = TEMP IF( I.LT.1 ) $ A( J-I+1+KUU, I+N ) = ZERO IF( I.GE.1 .AND. MNSUB.NE.MXSUB ) $ A( MXSUB-MNSUB+1+KUU, MNSUB ) = TEMP 250 CONTINUE 260 CONTINUE ELSE IF( ISYM.EQ.1 ) THEN DO 280 J = 1, N DO 270 I = J - KUU, J + KLL TEMP = DLATM3( M, N, I, J, ISUB, JSUB, KL, KU, $ IDIST, ISEED, D, IGRADE, DL, DR, IPVTNG, $ IWORK, SPARSE ) A( ISUB-JSUB+KUU+1, JSUB ) = TEMP 270 CONTINUE 280 CONTINUE END IF * END IF * ELSE * * Use DLATM2 * IF( IPACK.EQ.0 ) THEN IF( ISYM.EQ.0 ) THEN DO 300 J = 1, N DO 290 I = 1, J A( I, J ) = DLATM2( M, N, I, J, KL, KU, IDIST, $ ISEED, D, IGRADE, DL, DR, IPVTNG, $ IWORK, SPARSE ) A( J, I ) = A( I, J ) 290 CONTINUE 300 CONTINUE ELSE IF( ISYM.EQ.1 ) THEN DO 320 J = 1, N DO 310 I = 1, M A( I, J ) = DLATM2( M, N, I, J, KL, KU, IDIST, $ ISEED, D, IGRADE, DL, DR, IPVTNG, $ IWORK, SPARSE ) 310 CONTINUE 320 CONTINUE END IF * ELSE IF( IPACK.EQ.1 ) THEN * DO 340 J = 1, N DO 330 I = 1, J A( I, J ) = DLATM2( M, N, I, J, KL, KU, IDIST, ISEED, $ D, IGRADE, DL, DR, IPVTNG, IWORK, SPARSE ) IF( I.NE.J ) $ A( J, I ) = ZERO 330 CONTINUE 340 CONTINUE * ELSE IF( IPACK.EQ.2 ) THEN * DO 360 J = 1, N DO 350 I = 1, J A( J, I ) = DLATM2( M, N, I, J, KL, KU, IDIST, ISEED, $ D, IGRADE, DL, DR, IPVTNG, IWORK, SPARSE ) IF( I.NE.J ) $ A( I, J ) = ZERO 350 CONTINUE 360 CONTINUE * ELSE IF( IPACK.EQ.3 ) THEN * ISUB = 0 JSUB = 1 DO 380 J = 1, N DO 370 I = 1, J ISUB = ISUB + 1 IF( ISUB.GT.LDA ) THEN ISUB = 1 JSUB = JSUB + 1 END IF A( ISUB, JSUB ) = DLATM2( M, N, I, J, KL, KU, IDIST, $ ISEED, D, IGRADE, DL, DR, IPVTNG, $ IWORK, SPARSE ) 370 CONTINUE 380 CONTINUE * ELSE IF( IPACK.EQ.4 ) THEN * IF( ISYM.EQ.0 ) THEN DO 400 J = 1, N DO 390 I = 1, J * * Compute K = location of (I,J) entry in packed array * IF( I.EQ.1 ) THEN K = J ELSE K = N*( N+1 ) / 2 - ( N-I+1 )*( N-I+2 ) / 2 + $ J - I + 1 END IF * * Convert K to (ISUB,JSUB) location * JSUB = ( K-1 ) / LDA + 1 ISUB = K - LDA*( JSUB-1 ) * A( ISUB, JSUB ) = DLATM2( M, N, I, J, KL, KU, $ IDIST, ISEED, D, IGRADE, DL, DR, $ IPVTNG, IWORK, SPARSE ) 390 CONTINUE 400 CONTINUE ELSE ISUB = 0 JSUB = 1 DO 420 J = 1, N DO 410 I = J, M ISUB = ISUB + 1 IF( ISUB.GT.LDA ) THEN ISUB = 1 JSUB = JSUB + 1 END IF A( ISUB, JSUB ) = DLATM2( M, N, I, J, KL, KU, $ IDIST, ISEED, D, IGRADE, DL, DR, $ IPVTNG, IWORK, SPARSE ) 410 CONTINUE 420 CONTINUE END IF * ELSE IF( IPACK.EQ.5 ) THEN * DO 440 J = 1, N DO 430 I = J - KUU, J IF( I.LT.1 ) THEN A( J-I+1, I+N ) = ZERO ELSE A( J-I+1, I ) = DLATM2( M, N, I, J, KL, KU, IDIST, $ ISEED, D, IGRADE, DL, DR, IPVTNG, $ IWORK, SPARSE ) END IF 430 CONTINUE 440 CONTINUE * ELSE IF( IPACK.EQ.6 ) THEN * DO 460 J = 1, N DO 450 I = J - KUU, J A( I-J+KUU+1, J ) = DLATM2( M, N, I, J, KL, KU, IDIST, $ ISEED, D, IGRADE, DL, DR, IPVTNG, $ IWORK, SPARSE ) 450 CONTINUE 460 CONTINUE * ELSE IF( IPACK.EQ.7 ) THEN * IF( ISYM.EQ.0 ) THEN DO 480 J = 1, N DO 470 I = J - KUU, J A( I-J+KUU+1, J ) = DLATM2( M, N, I, J, KL, KU, $ IDIST, ISEED, D, IGRADE, DL, $ DR, IPVTNG, IWORK, SPARSE ) IF( I.LT.1 ) $ A( J-I+1+KUU, I+N ) = ZERO IF( I.GE.1 .AND. I.NE.J ) $ A( J-I+1+KUU, I ) = A( I-J+KUU+1, J ) 470 CONTINUE 480 CONTINUE ELSE IF( ISYM.EQ.1 ) THEN DO 500 J = 1, N DO 490 I = J - KUU, J + KLL A( I-J+KUU+1, J ) = DLATM2( M, N, I, J, KL, KU, $ IDIST, ISEED, D, IGRADE, DL, $ DR, IPVTNG, IWORK, SPARSE ) 490 CONTINUE 500 CONTINUE END IF * END IF * END IF * * 5) Scaling the norm * IF( IPACK.EQ.0 ) THEN ONORM = DLANGE( 'M', M, N, A, LDA, TEMPA ) ELSE IF( IPACK.EQ.1 ) THEN ONORM = DLANSY( 'M', 'U', N, A, LDA, TEMPA ) ELSE IF( IPACK.EQ.2 ) THEN ONORM = DLANSY( 'M', 'L', N, A, LDA, TEMPA ) ELSE IF( IPACK.EQ.3 ) THEN ONORM = DLANSP( 'M', 'U', N, A, TEMPA ) ELSE IF( IPACK.EQ.4 ) THEN ONORM = DLANSP( 'M', 'L', N, A, TEMPA ) ELSE IF( IPACK.EQ.5 ) THEN ONORM = DLANSB( 'M', 'L', N, KLL, A, LDA, TEMPA ) ELSE IF( IPACK.EQ.6 ) THEN ONORM = DLANSB( 'M', 'U', N, KUU, A, LDA, TEMPA ) ELSE IF( IPACK.EQ.7 ) THEN ONORM = DLANGB( 'M', N, KLL, KUU, A, LDA, TEMPA ) END IF * IF( ANORM.GE.ZERO ) THEN * IF( ANORM.GT.ZERO .AND. ONORM.EQ.ZERO ) THEN * * Desired scaling impossible * INFO = 5 RETURN * ELSE IF( ( ANORM.GT.ONE .AND. ONORM.LT.ONE ) .OR. $ ( ANORM.LT.ONE .AND. ONORM.GT.ONE ) ) THEN * * Scale carefully to avoid over / underflow * IF( IPACK.LE.2 ) THEN DO 510 J = 1, N CALL DSCAL( M, ONE / ONORM, A( 1, J ), 1 ) CALL DSCAL( M, ANORM, A( 1, J ), 1 ) 510 CONTINUE * ELSE IF( IPACK.EQ.3 .OR. IPACK.EQ.4 ) THEN * CALL DSCAL( N*( N+1 ) / 2, ONE / ONORM, A, 1 ) CALL DSCAL( N*( N+1 ) / 2, ANORM, A, 1 ) * ELSE IF( IPACK.GE.5 ) THEN * DO 520 J = 1, N CALL DSCAL( KLL+KUU+1, ONE / ONORM, A( 1, J ), 1 ) CALL DSCAL( KLL+KUU+1, ANORM, A( 1, J ), 1 ) 520 CONTINUE * END IF * ELSE * * Scale straightforwardly * IF( IPACK.LE.2 ) THEN DO 530 J = 1, N CALL DSCAL( M, ANORM / ONORM, A( 1, J ), 1 ) 530 CONTINUE * ELSE IF( IPACK.EQ.3 .OR. IPACK.EQ.4 ) THEN * CALL DSCAL( N*( N+1 ) / 2, ANORM / ONORM, A, 1 ) * ELSE IF( IPACK.GE.5 ) THEN * DO 540 J = 1, N CALL DSCAL( KLL+KUU+1, ANORM / ONORM, A( 1, J ), 1 ) 540 CONTINUE END IF * END IF * END IF * * End of DLATMR * END |