1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
SUBROUTINE ZLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO )
* * -- LAPACK auxiliary test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * June 2010 * * .. Scalar Arguments .. CHARACTER INIT, SIDE INTEGER INFO, LDA, M, N * .. * .. Array Arguments .. INTEGER ISEED( 4 ) COMPLEX*16 A( LDA, * ), X( * ) * .. * * Purpose * ======= * * ZLAROR pre- or post-multiplies an M by N matrix A by a random * unitary matrix U, overwriting A. A may optionally be * initialized to the identity matrix before multiplying by U. * U is generated using the method of G.W. Stewart * ( SIAM J. Numer. Anal. 17, 1980, pp. 403-409 ). * (BLAS-2 version) * * Arguments * ========= * * SIDE (input) CHARACTER*1 * SIDE specifies whether A is multiplied on the left or right * by U. * SIDE = 'L' Multiply A on the left (premultiply) by U * SIDE = 'R' Multiply A on the right (postmultiply) by U* * SIDE = 'C' Multiply A on the left by U and the right by U* * SIDE = 'T' Multiply A on the left by U and the right by U' * Not modified. * * INIT (input) CHARACTER*1 * INIT specifies whether or not A should be initialized to * the identity matrix. * INIT = 'I' Initialize A to (a section of) the * identity matrix before applying U. * INIT = 'N' No initialization. Apply U to the * input matrix A. * * INIT = 'I' may be used to generate square (i.e., unitary) * or rectangular orthogonal matrices (orthogonality being * in the sense of ZDOTC): * * For square matrices, M=N, and SIDE many be either 'L' or * 'R'; the rows will be orthogonal to each other, as will the * columns. * For rectangular matrices where M < N, SIDE = 'R' will * produce a dense matrix whose rows will be orthogonal and * whose columns will not, while SIDE = 'L' will produce a * matrix whose rows will be orthogonal, and whose first M * columns will be orthogonal, the remaining columns being * zero. * For matrices where M > N, just use the previous * explanation, interchanging 'L' and 'R' and "rows" and * "columns". * * Not modified. * * M (input) INTEGER * Number of rows of A. Not modified. * * N (input) INTEGER * Number of columns of A. Not modified. * * A COMPLEX*16 array, dimension ( LDA, N ) * Input and output array. Overwritten by U A ( if SIDE = 'L' ) * or by A U ( if SIDE = 'R' ) * or by U A U* ( if SIDE = 'C') * or by U A U' ( if SIDE = 'T') on exit. * * LDA (input) INTEGER * Leading dimension of A. Must be at least MAX ( 1, M ). * Not modified. * * ISEED (input/output) INTEGER array, dimension ( 4 ) * On entry ISEED specifies the seed of the random number * generator. The array elements should be between 0 and 4095; * if not they will be reduced mod 4096. Also, ISEED(4) must * be odd. The random number generator uses a linear * congruential sequence limited to small integers, and so * should produce machine independent random numbers. The * values of ISEED are changed on exit, and can be used in the * next call to ZLAROR to continue the same random number * sequence. * Modified. * * X (workspace) COMPLEX*16 array, dimension ( 3*MAX( M, N ) ) * Workspace. Of length: * 2*M + N if SIDE = 'L', * 2*N + M if SIDE = 'R', * 3*N if SIDE = 'C' or 'T'. * Modified. * * INFO (output) INTEGER * An error flag. It is set to: * 0 if no error. * 1 if ZLARND returned a bad random number (installation * problem) * -1 if SIDE is not L, R, C, or T. * -3 if M is negative. * -4 if N is negative or if SIDE is C or T and N is not equal * to M. * -6 if LDA is less than M. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TOOSML PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, $ TOOSML = 1.0D-20 ) COMPLEX*16 CZERO, CONE PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ), $ CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. INTEGER IROW, ITYPE, IXFRM, J, JCOL, KBEG, NXFRM DOUBLE PRECISION FACTOR, XABS, XNORM COMPLEX*16 CSIGN, XNORMS * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DZNRM2 COMPLEX*16 ZLARND EXTERNAL LSAME, DZNRM2, ZLARND * .. * .. External Subroutines .. EXTERNAL XERBLA, ZGEMV, ZGERC, ZLACGV, ZLASET, ZSCAL * .. * .. Intrinsic Functions .. INTRINSIC ABS, DCMPLX, DCONJG * .. * .. Executable Statements .. * IF( N.EQ.0 .OR. M.EQ.0 ) $ RETURN * ITYPE = 0 IF( LSAME( SIDE, 'L' ) ) THEN ITYPE = 1 ELSE IF( LSAME( SIDE, 'R' ) ) THEN ITYPE = 2 ELSE IF( LSAME( SIDE, 'C' ) ) THEN ITYPE = 3 ELSE IF( LSAME( SIDE, 'T' ) ) THEN ITYPE = 4 END IF * * Check for argument errors. * INFO = 0 IF( ITYPE.EQ.0 ) THEN INFO = -1 ELSE IF( M.LT.0 ) THEN INFO = -3 ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.3 .AND. N.NE.M ) ) THEN INFO = -4 ELSE IF( LDA.LT.M ) THEN INFO = -6 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZLAROR', -INFO ) RETURN END IF * IF( ITYPE.EQ.1 ) THEN NXFRM = M ELSE NXFRM = N END IF * * Initialize A to the identity matrix if desired * IF( LSAME( INIT, 'I' ) ) $ CALL ZLASET( 'Full', M, N, CZERO, CONE, A, LDA ) * * If no rotation possible, still multiply by * a random complex number from the circle |x| = 1 * * 2) Compute Rotation by computing Householder * Transformations H(2), H(3), ..., H(n). Note that the * order in which they are computed is irrelevant. * DO 10 J = 1, NXFRM X( J ) = CZERO 10 CONTINUE * DO 30 IXFRM = 2, NXFRM KBEG = NXFRM - IXFRM + 1 * * Generate independent normal( 0, 1 ) random numbers * DO 20 J = KBEG, NXFRM X( J ) = ZLARND( 3, ISEED ) 20 CONTINUE * * Generate a Householder transformation from the random vector X * XNORM = DZNRM2( IXFRM, X( KBEG ), 1 ) XABS = ABS( X( KBEG ) ) IF( XABS.NE.CZERO ) THEN CSIGN = X( KBEG ) / XABS ELSE CSIGN = CONE END IF XNORMS = CSIGN*XNORM X( NXFRM+KBEG ) = -CSIGN FACTOR = XNORM*( XNORM+XABS ) IF( ABS( FACTOR ).LT.TOOSML ) THEN INFO = 1 CALL XERBLA( 'ZLAROR', -INFO ) RETURN ELSE FACTOR = ONE / FACTOR END IF X( KBEG ) = X( KBEG ) + XNORMS * * Apply Householder transformation to A * IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 .OR. ITYPE.EQ.4 ) THEN * * Apply H(k) on the left of A * CALL ZGEMV( 'C', IXFRM, N, CONE, A( KBEG, 1 ), LDA, $ X( KBEG ), 1, CZERO, X( 2*NXFRM+1 ), 1 ) CALL ZGERC( IXFRM, N, -DCMPLX( FACTOR ), X( KBEG ), 1, $ X( 2*NXFRM+1 ), 1, A( KBEG, 1 ), LDA ) * END IF * IF( ITYPE.GE.2 .AND. ITYPE.LE.4 ) THEN * * Apply H(k)* (or H(k)') on the right of A * IF( ITYPE.EQ.4 ) THEN CALL ZLACGV( IXFRM, X( KBEG ), 1 ) END IF * CALL ZGEMV( 'N', M, IXFRM, CONE, A( 1, KBEG ), LDA, $ X( KBEG ), 1, CZERO, X( 2*NXFRM+1 ), 1 ) CALL ZGERC( M, IXFRM, -DCMPLX( FACTOR ), X( 2*NXFRM+1 ), 1, $ X( KBEG ), 1, A( 1, KBEG ), LDA ) * END IF 30 CONTINUE * X( 1 ) = ZLARND( 3, ISEED ) XABS = ABS( X( 1 ) ) IF( XABS.NE.ZERO ) THEN CSIGN = X( 1 ) / XABS ELSE CSIGN = CONE END IF X( 2*NXFRM ) = CSIGN * * Scale the matrix A by D. * IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 .OR. ITYPE.EQ.4 ) THEN DO 40 IROW = 1, M CALL ZSCAL( N, DCONJG( X( NXFRM+IROW ) ), A( IROW, 1 ), $ LDA ) 40 CONTINUE END IF * IF( ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN DO 50 JCOL = 1, N CALL ZSCAL( M, X( NXFRM+JCOL ), A( 1, JCOL ), 1 ) 50 CONTINUE END IF * IF( ITYPE.EQ.4 ) THEN DO 60 JCOL = 1, N CALL ZSCAL( M, DCONJG( X( NXFRM+JCOL ) ), A( 1, JCOL ), 1 ) 60 CONTINUE END IF RETURN * * End of ZLAROR * END |