1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
SUBROUTINE CGET36( RMAX, LMAX, NINFO, KNT, NIN )
* * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER KNT, LMAX, NIN, NINFO REAL RMAX * .. * * Purpose * ======= * * CGET36 tests CTREXC, a routine for reordering diagonal entries of a * matrix in complex Schur form. Thus, CLAEXC computes a unitary matrix * Q such that * * Q' * T1 * Q = T2 * * and where one of the diagonal blocks of T1 (the one at row IFST) has * been moved to position ILST. * * The test code verifies that the residual Q'*T1*Q-T2 is small, that T2 * is in Schur form, and that the final position of the IFST block is * ILST. * * The test matrices are read from a file with logical unit number NIN. * * Arguments * ========== * * RMAX (output) REAL * Value of the largest test ratio. * * LMAX (output) INTEGER * Example number where largest test ratio achieved. * * NINFO (output) INTEGER * Number of examples where INFO is nonzero. * * KNT (output) INTEGER * Total number of examples tested. * * NIN (input) INTEGER * Input logical unit number. * * ===================================================================== * * .. Parameters .. REAL ZERO, ONE PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), $ CONE = ( 1.0E+0, 0.0E+0 ) ) INTEGER LDT, LWORK PARAMETER ( LDT = 10, LWORK = 2*LDT*LDT ) * .. * .. Local Scalars .. INTEGER I, IFST, ILST, INFO1, INFO2, J, N REAL EPS, RES COMPLEX CTEMP * .. * .. Local Arrays .. REAL RESULT( 2 ), RWORK( LDT ) COMPLEX DIAG( LDT ), Q( LDT, LDT ), T1( LDT, LDT ), $ T2( LDT, LDT ), TMP( LDT, LDT ), WORK( LWORK ) * .. * .. External Functions .. REAL SLAMCH EXTERNAL SLAMCH * .. * .. External Subroutines .. EXTERNAL CCOPY, CHST01, CLACPY, CLASET, CTREXC * .. * .. Executable Statements .. * EPS = SLAMCH( 'P' ) RMAX = ZERO LMAX = 0 KNT = 0 NINFO = 0 * * Read input data until N=0 * 10 CONTINUE READ( NIN, FMT = * )N, IFST, ILST IF( N.EQ.0 ) $ RETURN KNT = KNT + 1 DO 20 I = 1, N READ( NIN, FMT = * )( TMP( I, J ), J = 1, N ) 20 CONTINUE CALL CLACPY( 'F', N, N, TMP, LDT, T1, LDT ) CALL CLACPY( 'F', N, N, TMP, LDT, T2, LDT ) RES = ZERO * * Test without accumulating Q * CALL CLASET( 'Full', N, N, CZERO, CONE, Q, LDT ) CALL CTREXC( 'N', N, T1, LDT, Q, LDT, IFST, ILST, INFO1 ) DO 40 I = 1, N DO 30 J = 1, N IF( I.EQ.J .AND. Q( I, J ).NE.CONE ) $ RES = RES + ONE / EPS IF( I.NE.J .AND. Q( I, J ).NE.CZERO ) $ RES = RES + ONE / EPS 30 CONTINUE 40 CONTINUE * * Test with accumulating Q * CALL CLASET( 'Full', N, N, CZERO, CONE, Q, LDT ) CALL CTREXC( 'V', N, T2, LDT, Q, LDT, IFST, ILST, INFO2 ) * * Compare T1 with T2 * DO 60 I = 1, N DO 50 J = 1, N IF( T1( I, J ).NE.T2( I, J ) ) $ RES = RES + ONE / EPS 50 CONTINUE 60 CONTINUE IF( INFO1.NE.0 .OR. INFO2.NE.0 ) $ NINFO = NINFO + 1 IF( INFO1.NE.INFO2 ) $ RES = RES + ONE / EPS * * Test for successful reordering of T2 * CALL CCOPY( N, TMP, LDT+1, DIAG, 1 ) IF( IFST.LT.ILST ) THEN DO 70 I = IFST + 1, ILST CTEMP = DIAG( I ) DIAG( I ) = DIAG( I-1 ) DIAG( I-1 ) = CTEMP 70 CONTINUE ELSE IF( IFST.GT.ILST ) THEN DO 80 I = IFST - 1, ILST, -1 CTEMP = DIAG( I+1 ) DIAG( I+1 ) = DIAG( I ) DIAG( I ) = CTEMP 80 CONTINUE END IF DO 90 I = 1, N IF( T2( I, I ).NE.DIAG( I ) ) $ RES = RES + ONE / EPS 90 CONTINUE * * Test for small residual, and orthogonality of Q * CALL CHST01( N, 1, N, TMP, LDT, T2, LDT, Q, LDT, WORK, LWORK, $ RWORK, RESULT ) RES = RES + RESULT( 1 ) + RESULT( 2 ) * * Test for T2 being in Schur form * DO 110 J = 1, N - 1 DO 100 I = J + 1, N IF( T2( I, J ).NE.CZERO ) $ RES = RES + ONE / EPS 100 CONTINUE 110 CONTINUE IF( RES.GT.RMAX ) THEN RMAX = RES LMAX = KNT END IF GO TO 10 * * End of CGET36 * END |