1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 |
SUBROUTINE DCHKHS( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
$ NOUNIT, A, LDA, H, T1, T2, U, LDU, Z, UZ, WR1, $ WI1, WR3, WI3, EVECTL, EVECTR, EVECTY, EVECTX, $ UU, TAU, WORK, NWORK, IWORK, SELECT, RESULT, $ INFO ) * * -- LAPACK test routine (version 3.1.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * February 2007 * * .. Scalar Arguments .. INTEGER INFO, LDA, LDU, NOUNIT, NSIZES, NTYPES, NWORK DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ), SELECT( * ) INTEGER ISEED( 4 ), IWORK( * ), NN( * ) DOUBLE PRECISION A( LDA, * ), EVECTL( LDU, * ), $ EVECTR( LDU, * ), EVECTX( LDU, * ), $ EVECTY( LDU, * ), H( LDA, * ), RESULT( 14 ), $ T1( LDA, * ), T2( LDA, * ), TAU( * ), $ U( LDU, * ), UU( LDU, * ), UZ( LDU, * ), $ WI1( * ), WI3( * ), WORK( * ), WR1( * ), $ WR3( * ), Z( LDU, * ) * .. * * Purpose * ======= * * DCHKHS checks the nonsymmetric eigenvalue problem routines. * * DGEHRD factors A as U H U' , where ' means transpose, * H is hessenberg, and U is an orthogonal matrix. * * DORGHR generates the orthogonal matrix U. * * DORMHR multiplies a matrix by the orthogonal matrix U. * * DHSEQR factors H as Z T Z' , where Z is orthogonal and * T is "quasi-triangular", and the eigenvalue vector W. * * DTREVC computes the left and right eigenvector matrices * L and R for T. * * DHSEIN computes the left and right eigenvector matrices * Y and X for H, using inverse iteration. * * When DCHKHS is called, a number of matrix "sizes" ("n's") and a * number of matrix "types" are specified. For each size ("n") * and each type of matrix, one matrix will be generated and used * to test the nonsymmetric eigenroutines. For each matrix, 14 * tests will be performed: * * (1) | A - U H U**T | / ( |A| n ulp ) * * (2) | I - UU**T | / ( n ulp ) * * (3) | H - Z T Z**T | / ( |H| n ulp ) * * (4) | I - ZZ**T | / ( n ulp ) * * (5) | A - UZ H (UZ)**T | / ( |A| n ulp ) * * (6) | I - UZ (UZ)**T | / ( n ulp ) * * (7) | T(Z computed) - T(Z not computed) | / ( |T| ulp ) * * (8) | W(Z computed) - W(Z not computed) | / ( |W| ulp ) * * (9) | TR - RW | / ( |T| |R| ulp ) * * (10) | L**H T - W**H L | / ( |T| |L| ulp ) * * (11) | HX - XW | / ( |H| |X| ulp ) * * (12) | Y**H H - W**H Y | / ( |H| |Y| ulp ) * * (13) | AX - XW | / ( |A| |X| ulp ) * * (14) | Y**H A - W**H Y | / ( |A| |Y| ulp ) * * The "sizes" are specified by an array NN(1:NSIZES); the value of * each element NN(j) specifies one size. * The "types" are specified by a logical array DOTYPE( 1:NTYPES ); * if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. * Currently, the list of possible types is: * * (1) The zero matrix. * (2) The identity matrix. * (3) A (transposed) Jordan block, with 1's on the diagonal. * * (4) A diagonal matrix with evenly spaced entries * 1, ..., ULP and random signs. * (ULP = (first number larger than 1) - 1 ) * (5) A diagonal matrix with geometrically spaced entries * 1, ..., ULP and random signs. * (6) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP * and random signs. * * (7) Same as (4), but multiplied by SQRT( overflow threshold ) * (8) Same as (4), but multiplied by SQRT( underflow threshold ) * * (9) A matrix of the form U' T U, where U is orthogonal and * T has evenly spaced entries 1, ..., ULP with random signs * on the diagonal and random O(1) entries in the upper * triangle. * * (10) A matrix of the form U' T U, where U is orthogonal and * T has geometrically spaced entries 1, ..., ULP with random * signs on the diagonal and random O(1) entries in the upper * triangle. * * (11) A matrix of the form U' T U, where U is orthogonal and * T has "clustered" entries 1, ULP,..., ULP with random * signs on the diagonal and random O(1) entries in the upper * triangle. * * (12) A matrix of the form U' T U, where U is orthogonal and * T has real or complex conjugate paired eigenvalues randomly * chosen from ( ULP, 1 ) and random O(1) entries in the upper * triangle. * * (13) A matrix of the form X' T X, where X has condition * SQRT( ULP ) and T has evenly spaced entries 1, ..., ULP * with random signs on the diagonal and random O(1) entries * in the upper triangle. * * (14) A matrix of the form X' T X, where X has condition * SQRT( ULP ) and T has geometrically spaced entries * 1, ..., ULP with random signs on the diagonal and random * O(1) entries in the upper triangle. * * (15) A matrix of the form X' T X, where X has condition * SQRT( ULP ) and T has "clustered" entries 1, ULP,..., ULP * with random signs on the diagonal and random O(1) entries * in the upper triangle. * * (16) A matrix of the form X' T X, where X has condition * SQRT( ULP ) and T has real or complex conjugate paired * eigenvalues randomly chosen from ( ULP, 1 ) and random * O(1) entries in the upper triangle. * * (17) Same as (16), but multiplied by SQRT( overflow threshold ) * (18) Same as (16), but multiplied by SQRT( underflow threshold ) * * (19) Nonsymmetric matrix with random entries chosen from (-1,1). * (20) Same as (19), but multiplied by SQRT( overflow threshold ) * (21) Same as (19), but multiplied by SQRT( underflow threshold ) * * Arguments * ========== * * NSIZES - INTEGER * The number of sizes of matrices to use. If it is zero, * DCHKHS does nothing. It must be at least zero. * Not modified. * * NN - INTEGER array, dimension (NSIZES) * An array containing the sizes to be used for the matrices. * Zero values will be skipped. The values must be at least * zero. * Not modified. * * NTYPES - INTEGER * The number of elements in DOTYPE. If it is zero, DCHKHS * does nothing. It must be at least zero. If it is MAXTYP+1 * and NSIZES is 1, then an additional type, MAXTYP+1 is * defined, which is to use whatever matrix is in A. This * is only useful if DOTYPE(1:MAXTYP) is .FALSE. and * DOTYPE(MAXTYP+1) is .TRUE. . * Not modified. * * DOTYPE - LOGICAL array, dimension (NTYPES) * If DOTYPE(j) is .TRUE., then for each size in NN a * matrix of that size and of type j will be generated. * If NTYPES is smaller than the maximum number of types * defined (PARAMETER MAXTYP), then types NTYPES+1 through * MAXTYP will not be generated. If NTYPES is larger * than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) * will be ignored. * Not modified. * * ISEED - INTEGER array, dimension (4) * On entry ISEED specifies the seed of the random number * generator. The array elements should be between 0 and 4095; * if not they will be reduced mod 4096. Also, ISEED(4) must * be odd. The random number generator uses a linear * congruential sequence limited to small integers, and so * should produce machine independent random numbers. The * values of ISEED are changed on exit, and can be used in the * next call to DCHKHS to continue the same random number * sequence. * Modified. * * THRESH - DOUBLE PRECISION * A test will count as "failed" if the "error", computed as * described above, exceeds THRESH. Note that the error * is scaled to be O(1), so THRESH should be a reasonably * small multiple of 1, e.g., 10 or 100. In particular, * it should not depend on the precision (single vs. double) * or the size of the matrix. It must be at least zero. * Not modified. * * NOUNIT - INTEGER * The FORTRAN unit number for printing out error messages * (e.g., if a routine returns IINFO not equal to 0.) * Not modified. * * A - DOUBLE PRECISION array, dimension (LDA,max(NN)) * Used to hold the matrix whose eigenvalues are to be * computed. On exit, A contains the last matrix actually * used. * Modified. * * LDA - INTEGER * The leading dimension of A, H, T1 and T2. It must be at * least 1 and at least max( NN ). * Not modified. * * H - DOUBLE PRECISION array, dimension (LDA,max(NN)) * The upper hessenberg matrix computed by DGEHRD. On exit, * H contains the Hessenberg form of the matrix in A. * Modified. * * T1 - DOUBLE PRECISION array, dimension (LDA,max(NN)) * The Schur (="quasi-triangular") matrix computed by DHSEQR * if Z is computed. On exit, T1 contains the Schur form of * the matrix in A. * Modified. * * T2 - DOUBLE PRECISION array, dimension (LDA,max(NN)) * The Schur matrix computed by DHSEQR when Z is not computed. * This should be identical to T1. * Modified. * * LDU - INTEGER * The leading dimension of U, Z, UZ and UU. It must be at * least 1 and at least max( NN ). * Not modified. * * U - DOUBLE PRECISION array, dimension (LDU,max(NN)) * The orthogonal matrix computed by DGEHRD. * Modified. * * Z - DOUBLE PRECISION array, dimension (LDU,max(NN)) * The orthogonal matrix computed by DHSEQR. * Modified. * * UZ - DOUBLE PRECISION array, dimension (LDU,max(NN)) * The product of U times Z. * Modified. * * WR1 - DOUBLE PRECISION array, dimension (max(NN)) * WI1 - DOUBLE PRECISION array, dimension (max(NN)) * The real and imaginary parts of the eigenvalues of A, * as computed when Z is computed. * On exit, WR1 + WI1*i are the eigenvalues of the matrix in A. * Modified. * * WR3 - DOUBLE PRECISION array, dimension (max(NN)) * WI3 - DOUBLE PRECISION array, dimension (max(NN)) * Like WR1, WI1, these arrays contain the eigenvalues of A, * but those computed when DHSEQR only computes the * eigenvalues, i.e., not the Schur vectors and no more of the * Schur form than is necessary for computing the * eigenvalues. * Modified. * * EVECTL - DOUBLE PRECISION array, dimension (LDU,max(NN)) * The (upper triangular) left eigenvector matrix for the * matrix in T1. For complex conjugate pairs, the real part * is stored in one row and the imaginary part in the next. * Modified. * * EVEZTR - DOUBLE PRECISION array, dimension (LDU,max(NN)) * The (upper triangular) right eigenvector matrix for the * matrix in T1. For complex conjugate pairs, the real part * is stored in one column and the imaginary part in the next. * Modified. * * EVECTY - DOUBLE PRECISION array, dimension (LDU,max(NN)) * The left eigenvector matrix for the * matrix in H. For complex conjugate pairs, the real part * is stored in one row and the imaginary part in the next. * Modified. * * EVECTX - DOUBLE PRECISION array, dimension (LDU,max(NN)) * The right eigenvector matrix for the * matrix in H. For complex conjugate pairs, the real part * is stored in one column and the imaginary part in the next. * Modified. * * UU - DOUBLE PRECISION array, dimension (LDU,max(NN)) * Details of the orthogonal matrix computed by DGEHRD. * Modified. * * TAU - DOUBLE PRECISION array, dimension(max(NN)) * Further details of the orthogonal matrix computed by DGEHRD. * Modified. * * WORK - DOUBLE PRECISION array, dimension (NWORK) * Workspace. * Modified. * * NWORK - INTEGER * The number of entries in WORK. NWORK >= 4*NN(j)*NN(j) + 2. * * IWORK - INTEGER array, dimension (max(NN)) * Workspace. * Modified. * * SELECT - LOGICAL array, dimension (max(NN)) * Workspace. * Modified. * * RESULT - DOUBLE PRECISION array, dimension (14) * The values computed by the fourteen tests described above. * The values are currently limited to 1/ulp, to avoid * overflow. * Modified. * * INFO - INTEGER * If 0, then everything ran OK. * -1: NSIZES < 0 * -2: Some NN(j) < 0 * -3: NTYPES < 0 * -6: THRESH < 0 * -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). * -14: LDU < 1 or LDU < NMAX. * -28: NWORK too small. * If DLATMR, SLATMS, or SLATME returns an error code, the * absolute value of it is returned. * If 1, then DHSEQR could not find all the shifts. * If 2, then the EISPACK code (for small blocks) failed. * If >2, then 30*N iterations were not enough to find an * eigenvalue or to decompose the problem. * Modified. * *----------------------------------------------------------------------- * * Some Local Variables and Parameters: * ---- ----- --------- --- ---------- * * ZERO, ONE Real 0 and 1. * MAXTYP The number of types defined. * MTEST The number of tests defined: care must be taken * that (1) the size of RESULT, (2) the number of * tests actually performed, and (3) MTEST agree. * NTEST The number of tests performed on this matrix * so far. This should be less than MTEST, and * equal to it by the last test. It will be less * if any of the routines being tested indicates * that it could not compute the matrices that * would be tested. * NMAX Largest value in NN. * NMATS The number of matrices generated so far. * NERRS The number of tests which have exceeded THRESH * so far (computed by DLAFTS). * COND, CONDS, * IMODE Values to be passed to the matrix generators. * ANORM Norm of A; passed to matrix generators. * * OVFL, UNFL Overflow and underflow thresholds. * ULP, ULPINV Finest relative precision and its inverse. * RTOVFL, RTUNFL, * RTULP, RTULPI Square roots of the previous 4 values. * * The following four arrays decode JTYPE: * KTYPE(j) The general type (1-10) for type "j". * KMODE(j) The MODE value to be passed to the matrix * generator for type "j". * KMAGN(j) The order of magnitude ( O(1), * O(overflow^(1/2) ), O(underflow^(1/2) ) * KCONDS(j) Selects whether CONDS is to be 1 or * 1/sqrt(ulp). (0 means irrelevant.) * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) INTEGER MAXTYP PARAMETER ( MAXTYP = 21 ) * .. * .. Local Scalars .. LOGICAL BADNN, MATCH INTEGER I, IHI, IINFO, ILO, IMODE, IN, ITYPE, J, JCOL, $ JJ, JSIZE, JTYPE, K, MTYPES, N, N1, NERRS, $ NMATS, NMAX, NSELC, NSELR, NTEST, NTESTT DOUBLE PRECISION ANINV, ANORM, COND, CONDS, OVFL, RTOVFL, RTULP, $ RTULPI, RTUNFL, TEMP1, TEMP2, ULP, ULPINV, UNFL * .. * .. Local Arrays .. CHARACTER ADUMMA( 1 ) INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KCONDS( MAXTYP ), $ KMAGN( MAXTYP ), KMODE( MAXTYP ), $ KTYPE( MAXTYP ) DOUBLE PRECISION DUMMA( 6 ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH * .. * .. External Subroutines .. EXTERNAL DCOPY, DGEHRD, DGEMM, DGET10, DGET22, DHSEIN, $ DHSEQR, DHST01, DLABAD, DLACPY, DLAFTS, DLASET, $ DLASUM, DLATME, DLATMR, DLATMS, DORGHR, DORMHR, $ DTREVC, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, MIN, SQRT * .. * .. Data statements .. DATA KTYPE / 1, 2, 3, 5*4, 4*6, 6*6, 3*9 / DATA KMAGN / 3*1, 1, 1, 1, 2, 3, 4*1, 1, 1, 1, 1, 2, $ 3, 1, 2, 3 / DATA KMODE / 3*0, 4, 3, 1, 4, 4, 4, 3, 1, 5, 4, 3, $ 1, 5, 5, 5, 4, 3, 1 / DATA KCONDS / 3*0, 5*0, 4*1, 6*2, 3*0 / * .. * .. Executable Statements .. * * Check for errors * NTESTT = 0 INFO = 0 * BADNN = .FALSE. NMAX = 0 DO 10 J = 1, NSIZES NMAX = MAX( NMAX, NN( J ) ) IF( NN( J ).LT.0 ) $ BADNN = .TRUE. 10 CONTINUE * * Check for errors * IF( NSIZES.LT.0 ) THEN INFO = -1 ELSE IF( BADNN ) THEN INFO = -2 ELSE IF( NTYPES.LT.0 ) THEN INFO = -3 ELSE IF( THRESH.LT.ZERO ) THEN INFO = -6 ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN INFO = -9 ELSE IF( LDU.LE.1 .OR. LDU.LT.NMAX ) THEN INFO = -14 ELSE IF( 4*NMAX*NMAX+2.GT.NWORK ) THEN INFO = -28 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DCHKHS', -INFO ) RETURN END IF * * Quick return if possible * IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 ) $ RETURN * * More important constants * UNFL = DLAMCH( 'Safe minimum' ) OVFL = DLAMCH( 'Overflow' ) CALL DLABAD( UNFL, OVFL ) ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' ) ULPINV = ONE / ULP RTUNFL = SQRT( UNFL ) RTOVFL = SQRT( OVFL ) RTULP = SQRT( ULP ) RTULPI = ONE / RTULP * * Loop over sizes, types * NERRS = 0 NMATS = 0 * DO 270 JSIZE = 1, NSIZES N = NN( JSIZE ) IF( N.EQ.0 ) $ GO TO 270 N1 = MAX( 1, N ) ANINV = ONE / DBLE( N1 ) * IF( NSIZES.NE.1 ) THEN MTYPES = MIN( MAXTYP, NTYPES ) ELSE MTYPES = MIN( MAXTYP+1, NTYPES ) END IF * DO 260 JTYPE = 1, MTYPES IF( .NOT.DOTYPE( JTYPE ) ) $ GO TO 260 NMATS = NMATS + 1 NTEST = 0 * * Save ISEED in case of an error. * DO 20 J = 1, 4 IOLDSD( J ) = ISEED( J ) 20 CONTINUE * * Initialize RESULT * DO 30 J = 1, 14 RESULT( J ) = ZERO 30 CONTINUE * * Compute "A" * * Control parameters: * * KMAGN KCONDS KMODE KTYPE * =1 O(1) 1 clustered 1 zero * =2 large large clustered 2 identity * =3 small exponential Jordan * =4 arithmetic diagonal, (w/ eigenvalues) * =5 random log symmetric, w/ eigenvalues * =6 random general, w/ eigenvalues * =7 random diagonal * =8 random symmetric * =9 random general * =10 random triangular * IF( MTYPES.GT.MAXTYP ) $ GO TO 100 * ITYPE = KTYPE( JTYPE ) IMODE = KMODE( JTYPE ) * * Compute norm * GO TO ( 40, 50, 60 )KMAGN( JTYPE ) * 40 CONTINUE ANORM = ONE GO TO 70 * 50 CONTINUE ANORM = ( RTOVFL*ULP )*ANINV GO TO 70 * 60 CONTINUE ANORM = RTUNFL*N*ULPINV GO TO 70 * 70 CONTINUE * CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA ) IINFO = 0 COND = ULPINV * * Special Matrices * IF( ITYPE.EQ.1 ) THEN * * Zero * IINFO = 0 * ELSE IF( ITYPE.EQ.2 ) THEN * * Identity * DO 80 JCOL = 1, N A( JCOL, JCOL ) = ANORM 80 CONTINUE * ELSE IF( ITYPE.EQ.3 ) THEN * * Jordan Block * DO 90 JCOL = 1, N A( JCOL, JCOL ) = ANORM IF( JCOL.GT.1 ) $ A( JCOL, JCOL-1 ) = ONE 90 CONTINUE * ELSE IF( ITYPE.EQ.4 ) THEN * * Diagonal Matrix, [Eigen]values Specified * CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND, $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.5 ) THEN * * Symmetric, eigenvalues specified * CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND, $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.6 ) THEN * * General, eigenvalues specified * IF( KCONDS( JTYPE ).EQ.1 ) THEN CONDS = ONE ELSE IF( KCONDS( JTYPE ).EQ.2 ) THEN CONDS = RTULPI ELSE CONDS = ZERO END IF * ADUMMA( 1 ) = ' ' CALL DLATME( N, 'S', ISEED, WORK, IMODE, COND, ONE, $ ADUMMA, 'T', 'T', 'T', WORK( N+1 ), 4, $ CONDS, N, N, ANORM, A, LDA, WORK( 2*N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.7 ) THEN * * Diagonal, random eigenvalues * CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.8 ) THEN * * Symmetric, random eigenvalues * CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.9 ) THEN * * General, random eigenvalues * CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.10 ) THEN * * Triangular, random eigenvalues * CALL DLATMR( N, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE * IINFO = 1 END IF * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) RETURN END IF * 100 CONTINUE * * Call DGEHRD to compute H and U, do tests. * CALL DLACPY( ' ', N, N, A, LDA, H, LDA ) * NTEST = 1 * ILO = 1 IHI = N * CALL DGEHRD( N, ILO, IHI, H, LDA, WORK, WORK( N+1 ), $ NWORK-N, IINFO ) * IF( IINFO.NE.0 ) THEN RESULT( 1 ) = ULPINV WRITE( NOUNIT, FMT = 9999 )'DGEHRD', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 250 END IF * DO 120 J = 1, N - 1 UU( J+1, J ) = ZERO DO 110 I = J + 2, N U( I, J ) = H( I, J ) UU( I, J ) = H( I, J ) H( I, J ) = ZERO 110 CONTINUE 120 CONTINUE CALL DCOPY( N-1, WORK, 1, TAU, 1 ) CALL DORGHR( N, ILO, IHI, U, LDU, WORK, WORK( N+1 ), $ NWORK-N, IINFO ) NTEST = 2 * CALL DHST01( N, ILO, IHI, A, LDA, H, LDA, U, LDU, WORK, $ NWORK, RESULT( 1 ) ) * * Call DHSEQR to compute T1, T2 and Z, do tests. * * Eigenvalues only (WR3,WI3) * CALL DLACPY( ' ', N, N, H, LDA, T2, LDA ) NTEST = 3 RESULT( 3 ) = ULPINV * CALL DHSEQR( 'E', 'N', N, ILO, IHI, T2, LDA, WR3, WI3, UZ, $ LDU, WORK, NWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DHSEQR(E)', IINFO, N, JTYPE, $ IOLDSD IF( IINFO.LE.N+2 ) THEN INFO = ABS( IINFO ) GO TO 250 END IF END IF * * Eigenvalues (WR1,WI1) and Full Schur Form (T2) * CALL DLACPY( ' ', N, N, H, LDA, T2, LDA ) * CALL DHSEQR( 'S', 'N', N, ILO, IHI, T2, LDA, WR1, WI1, UZ, $ LDU, WORK, NWORK, IINFO ) IF( IINFO.NE.0 .AND. IINFO.LE.N+2 ) THEN WRITE( NOUNIT, FMT = 9999 )'DHSEQR(S)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 250 END IF * * Eigenvalues (WR1,WI1), Schur Form (T1), and Schur vectors * (UZ) * CALL DLACPY( ' ', N, N, H, LDA, T1, LDA ) CALL DLACPY( ' ', N, N, U, LDU, UZ, LDA ) * CALL DHSEQR( 'S', 'V', N, ILO, IHI, T1, LDA, WR1, WI1, UZ, $ LDU, WORK, NWORK, IINFO ) IF( IINFO.NE.0 .AND. IINFO.LE.N+2 ) THEN WRITE( NOUNIT, FMT = 9999 )'DHSEQR(V)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) GO TO 250 END IF * * Compute Z = U' UZ * CALL DGEMM( 'T', 'N', N, N, N, ONE, U, LDU, UZ, LDU, ZERO, $ Z, LDU ) NTEST = 8 * * Do Tests 3: | H - Z T Z' | / ( |H| n ulp ) * and 4: | I - Z Z' | / ( n ulp ) * CALL DHST01( N, ILO, IHI, H, LDA, T1, LDA, Z, LDU, WORK, $ NWORK, RESULT( 3 ) ) * * Do Tests 5: | A - UZ T (UZ)' | / ( |A| n ulp ) * and 6: | I - UZ (UZ)' | / ( n ulp ) * CALL DHST01( N, ILO, IHI, A, LDA, T1, LDA, UZ, LDU, WORK, $ NWORK, RESULT( 5 ) ) * * Do Test 7: | T2 - T1 | / ( |T| n ulp ) * CALL DGET10( N, N, T2, LDA, T1, LDA, WORK, RESULT( 7 ) ) * * Do Test 8: | W3 - W1 | / ( max(|W1|,|W3|) ulp ) * TEMP1 = ZERO TEMP2 = ZERO DO 130 J = 1, N TEMP1 = MAX( TEMP1, ABS( WR1( J ) )+ABS( WI1( J ) ), $ ABS( WR3( J ) )+ABS( WI3( J ) ) ) TEMP2 = MAX( TEMP2, ABS( WR1( J )-WR3( J ) )+ $ ABS( WR1( J )-WR3( J ) ) ) 130 CONTINUE * RESULT( 8 ) = TEMP2 / MAX( UNFL, ULP*MAX( TEMP1, TEMP2 ) ) * * Compute the Left and Right Eigenvectors of T * * Compute the Right eigenvector Matrix: * NTEST = 9 RESULT( 9 ) = ULPINV * * Select last max(N/4,1) real, max(N/4,1) complex eigenvectors * NSELC = 0 NSELR = 0 J = N 140 CONTINUE IF( WI1( J ).EQ.ZERO ) THEN IF( NSELR.LT.MAX( N / 4, 1 ) ) THEN NSELR = NSELR + 1 SELECT( J ) = .TRUE. ELSE SELECT( J ) = .FALSE. END IF J = J - 1 ELSE IF( NSELC.LT.MAX( N / 4, 1 ) ) THEN NSELC = NSELC + 1 SELECT( J ) = .TRUE. SELECT( J-1 ) = .FALSE. ELSE SELECT( J ) = .FALSE. SELECT( J-1 ) = .FALSE. END IF J = J - 2 END IF IF( J.GT.0 ) $ GO TO 140 * CALL DTREVC( 'Right', 'All', SELECT, N, T1, LDA, DUMMA, LDU, $ EVECTR, LDU, N, IN, WORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DTREVC(R,A)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 250 END IF * * Test 9: | TR - RW | / ( |T| |R| ulp ) * CALL DGET22( 'N', 'N', 'N', N, T1, LDA, EVECTR, LDU, WR1, $ WI1, WORK, DUMMA( 1 ) ) RESULT( 9 ) = DUMMA( 1 ) IF( DUMMA( 2 ).GT.THRESH ) THEN WRITE( NOUNIT, FMT = 9998 )'Right', 'DTREVC', $ DUMMA( 2 ), N, JTYPE, IOLDSD END IF * * Compute selected right eigenvectors and confirm that * they agree with previous right eigenvectors * CALL DTREVC( 'Right', 'Some', SELECT, N, T1, LDA, DUMMA, $ LDU, EVECTL, LDU, N, IN, WORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DTREVC(R,S)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 250 END IF * K = 1 MATCH = .TRUE. DO 170 J = 1, N IF( SELECT( J ) .AND. WI1( J ).EQ.ZERO ) THEN DO 150 JJ = 1, N IF( EVECTR( JJ, J ).NE.EVECTL( JJ, K ) ) THEN MATCH = .FALSE. GO TO 180 END IF 150 CONTINUE K = K + 1 ELSE IF( SELECT( J ) .AND. WI1( J ).NE.ZERO ) THEN DO 160 JJ = 1, N IF( EVECTR( JJ, J ).NE.EVECTL( JJ, K ) .OR. $ EVECTR( JJ, J+1 ).NE.EVECTL( JJ, K+1 ) ) THEN MATCH = .FALSE. GO TO 180 END IF 160 CONTINUE K = K + 2 END IF 170 CONTINUE 180 CONTINUE IF( .NOT.MATCH ) $ WRITE( NOUNIT, FMT = 9997 )'Right', 'DTREVC', N, JTYPE, $ IOLDSD * * Compute the Left eigenvector Matrix: * NTEST = 10 RESULT( 10 ) = ULPINV CALL DTREVC( 'Left', 'All', SELECT, N, T1, LDA, EVECTL, LDU, $ DUMMA, LDU, N, IN, WORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DTREVC(L,A)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 250 END IF * * Test 10: | LT - WL | / ( |T| |L| ulp ) * CALL DGET22( 'Trans', 'N', 'Conj', N, T1, LDA, EVECTL, LDU, $ WR1, WI1, WORK, DUMMA( 3 ) ) RESULT( 10 ) = DUMMA( 3 ) IF( DUMMA( 4 ).GT.THRESH ) THEN WRITE( NOUNIT, FMT = 9998 )'Left', 'DTREVC', DUMMA( 4 ), $ N, JTYPE, IOLDSD END IF * * Compute selected left eigenvectors and confirm that * they agree with previous left eigenvectors * CALL DTREVC( 'Left', 'Some', SELECT, N, T1, LDA, EVECTR, $ LDU, DUMMA, LDU, N, IN, WORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DTREVC(L,S)', IINFO, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) GO TO 250 END IF * K = 1 MATCH = .TRUE. DO 210 J = 1, N IF( SELECT( J ) .AND. WI1( J ).EQ.ZERO ) THEN DO 190 JJ = 1, N IF( EVECTL( JJ, J ).NE.EVECTR( JJ, K ) ) THEN MATCH = .FALSE. GO TO 220 END IF 190 CONTINUE K = K + 1 ELSE IF( SELECT( J ) .AND. WI1( J ).NE.ZERO ) THEN DO 200 JJ = 1, N IF( EVECTL( JJ, J ).NE.EVECTR( JJ, K ) .OR. $ EVECTL( JJ, J+1 ).NE.EVECTR( JJ, K+1 ) ) THEN MATCH = .FALSE. GO TO 220 END IF 200 CONTINUE K = K + 2 END IF 210 CONTINUE 220 CONTINUE IF( .NOT.MATCH ) $ WRITE( NOUNIT, FMT = 9997 )'Left', 'DTREVC', N, JTYPE, $ IOLDSD * * Call DHSEIN for Right eigenvectors of H, do test 11 * NTEST = 11 RESULT( 11 ) = ULPINV DO 230 J = 1, N SELECT( J ) = .TRUE. 230 CONTINUE * CALL DHSEIN( 'Right', 'Qr', 'Ninitv', SELECT, N, H, LDA, $ WR3, WI3, DUMMA, LDU, EVECTX, LDU, N1, IN, $ WORK, IWORK, IWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DHSEIN(R)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) $ GO TO 250 ELSE * * Test 11: | HX - XW | / ( |H| |X| ulp ) * * (from inverse iteration) * CALL DGET22( 'N', 'N', 'N', N, H, LDA, EVECTX, LDU, WR3, $ WI3, WORK, DUMMA( 1 ) ) IF( DUMMA( 1 ).LT.ULPINV ) $ RESULT( 11 ) = DUMMA( 1 )*ANINV IF( DUMMA( 2 ).GT.THRESH ) THEN WRITE( NOUNIT, FMT = 9998 )'Right', 'DHSEIN', $ DUMMA( 2 ), N, JTYPE, IOLDSD END IF END IF * * Call DHSEIN for Left eigenvectors of H, do test 12 * NTEST = 12 RESULT( 12 ) = ULPINV DO 240 J = 1, N SELECT( J ) = .TRUE. 240 CONTINUE * CALL DHSEIN( 'Left', 'Qr', 'Ninitv', SELECT, N, H, LDA, WR3, $ WI3, EVECTY, LDU, DUMMA, LDU, N1, IN, WORK, $ IWORK, IWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DHSEIN(L)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) $ GO TO 250 ELSE * * Test 12: | YH - WY | / ( |H| |Y| ulp ) * * (from inverse iteration) * CALL DGET22( 'C', 'N', 'C', N, H, LDA, EVECTY, LDU, WR3, $ WI3, WORK, DUMMA( 3 ) ) IF( DUMMA( 3 ).LT.ULPINV ) $ RESULT( 12 ) = DUMMA( 3 )*ANINV IF( DUMMA( 4 ).GT.THRESH ) THEN WRITE( NOUNIT, FMT = 9998 )'Left', 'DHSEIN', $ DUMMA( 4 ), N, JTYPE, IOLDSD END IF END IF * * Call DORMHR for Right eigenvectors of A, do test 13 * NTEST = 13 RESULT( 13 ) = ULPINV * CALL DORMHR( 'Left', 'No transpose', N, N, ILO, IHI, UU, $ LDU, TAU, EVECTX, LDU, WORK, NWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DORMHR(R)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) $ GO TO 250 ELSE * * Test 13: | AX - XW | / ( |A| |X| ulp ) * * (from inverse iteration) * CALL DGET22( 'N', 'N', 'N', N, A, LDA, EVECTX, LDU, WR3, $ WI3, WORK, DUMMA( 1 ) ) IF( DUMMA( 1 ).LT.ULPINV ) $ RESULT( 13 ) = DUMMA( 1 )*ANINV END IF * * Call DORMHR for Left eigenvectors of A, do test 14 * NTEST = 14 RESULT( 14 ) = ULPINV * CALL DORMHR( 'Left', 'No transpose', N, N, ILO, IHI, UU, $ LDU, TAU, EVECTY, LDU, WORK, NWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DORMHR(L)', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) $ GO TO 250 ELSE * * Test 14: | YA - WY | / ( |A| |Y| ulp ) * * (from inverse iteration) * CALL DGET22( 'C', 'N', 'C', N, A, LDA, EVECTY, LDU, WR3, $ WI3, WORK, DUMMA( 3 ) ) IF( DUMMA( 3 ).LT.ULPINV ) $ RESULT( 14 ) = DUMMA( 3 )*ANINV END IF * * End of Loop -- Check for RESULT(j) > THRESH * 250 CONTINUE * NTESTT = NTESTT + NTEST CALL DLAFTS( 'DHS', N, N, JTYPE, NTEST, RESULT, IOLDSD, $ THRESH, NOUNIT, NERRS ) * 260 CONTINUE 270 CONTINUE * * Summary * CALL DLASUM( 'DHS', NOUNIT, NERRS, NTESTT ) * RETURN * 9999 FORMAT( ' DCHKHS: ', A, ' returned INFO=', I6, '.', / 9X, 'N=', $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' ) 9998 FORMAT( ' DCHKHS: ', A, ' Eigenvectors from ', A, ' incorrectly ', $ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X, $ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, $ ')' ) 9997 FORMAT( ' DCHKHS: Selected ', A, ' Eigenvectors from ', A, $ ' do not match other eigenvectors ', 9X, 'N=', I6, $ ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' ) * * End of DCHKHS * END |