1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
SUBROUTINE ZCHKQL( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
$ NRHS, THRESH, TSTERR, NMAX, A, AF, AQ, AL, AC, $ B, X, XACT, TAU, WORK, RWORK, IWORK, NOUT ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * June 2010 * * .. Scalar Arguments .. LOGICAL TSTERR INTEGER NM, NMAX, NN, NNB, NOUT, NRHS DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NVAL( * ), $ NXVAL( * ) DOUBLE PRECISION RWORK( * ) COMPLEX*16 A( * ), AC( * ), AF( * ), AL( * ), AQ( * ), $ B( * ), TAU( * ), WORK( * ), X( * ), XACT( * ) * .. * * Purpose * ======= * * ZCHKQL tests ZGEQLF, ZUNGQL and CUNMQL. * * Arguments * ========= * * DOTYPE (input) LOGICAL array, dimension (NTYPES) * The matrix types to be used for testing. Matrices of type j * (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = * .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. * * NM (input) INTEGER * The number of values of M contained in the vector MVAL. * * MVAL (input) INTEGER array, dimension (NM) * The values of the matrix row dimension M. * * NN (input) INTEGER * The number of values of N contained in the vector NVAL. * * NVAL (input) INTEGER array, dimension (NN) * The values of the matrix column dimension N. * * NNB (input) INTEGER * The number of values of NB and NX contained in the * vectors NBVAL and NXVAL. The blocking parameters are used * in pairs (NB,NX). * * NBVAL (input) INTEGER array, dimension (NNB) * The values of the blocksize NB. * * NXVAL (input) INTEGER array, dimension (NNB) * The values of the crossover point NX. * * NRHS (input) INTEGER * The number of right hand side vectors to be generated for * each linear system. * * THRESH (input) DOUBLE PRECISION * The threshold value for the test ratios. A result is * included in the output file if RESULT >= THRESH. To have * every test ratio printed, use THRESH = 0. * * TSTERR (input) LOGICAL * Flag that indicates whether error exits are to be tested. * * NMAX (input) INTEGER * The maximum value permitted for M or N, used in dimensioning * the work arrays. * * A (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) * * AF (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) * * AQ (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) * * AL (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) * * AC (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) * * B (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) * * X (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) * * XACT (workspace) COMPLEX*16 array, dimension (NMAX*NRHS) * * TAU (workspace) COMPLEX*16 array, dimension (NMAX) * * WORK (workspace) COMPLEX*16 array, dimension (NMAX*NMAX) * * RWORK (workspace) DOUBLE PRECISION array, dimension (NMAX) * * IWORK (workspace) INTEGER array, dimension (NMAX) * * NOUT (input) INTEGER * The unit number for output. * * ===================================================================== * * .. Parameters .. INTEGER NTESTS PARAMETER ( NTESTS = 7 ) INTEGER NTYPES PARAMETER ( NTYPES = 8 ) DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) * .. * .. Local Scalars .. CHARACTER DIST, TYPE CHARACTER*3 PATH INTEGER I, IK, IM, IMAT, IN, INB, INFO, K, KL, KU, LDA, $ LWORK, M, MINMN, MODE, N, NB, NERRS, NFAIL, NK, $ NRUN, NT, NX DOUBLE PRECISION ANORM, CNDNUM * .. * .. Local Arrays .. INTEGER ISEED( 4 ), ISEEDY( 4 ), KVAL( 4 ) DOUBLE PRECISION RESULT( NTESTS ) * .. * .. External Subroutines .. EXTERNAL ALAERH, ALAHD, ALASUM, XLAENV, ZERRQL, ZGEQLS, $ ZGET02, ZLACPY, ZLARHS, ZLATB4, ZLATMS, ZQLT01, $ ZQLT02, ZQLT03 * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA ISEEDY / 1988, 1989, 1990, 1991 / * .. * .. Executable Statements .. * * Initialize constants and the random number seed. * PATH( 1: 1 ) = 'Zomplex precision' PATH( 2: 3 ) = 'QL' NRUN = 0 NFAIL = 0 NERRS = 0 DO 10 I = 1, 4 ISEED( I ) = ISEEDY( I ) 10 CONTINUE * * Test the error exits * IF( TSTERR ) $ CALL ZERRQL( PATH, NOUT ) INFOT = 0 CALL XLAENV( 2, 2 ) * LDA = NMAX LWORK = NMAX*MAX( NMAX, NRHS ) * * Do for each value of M in MVAL. * DO 70 IM = 1, NM M = MVAL( IM ) * * Do for each value of N in NVAL. * DO 60 IN = 1, NN N = NVAL( IN ) MINMN = MIN( M, N ) DO 50 IMAT = 1, NTYPES * * Do the tests only if DOTYPE( IMAT ) is true. * IF( .NOT.DOTYPE( IMAT ) ) $ GO TO 50 * * Set up parameters with ZLATB4 and generate a test matrix * with ZLATMS. * CALL ZLATB4( PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, $ CNDNUM, DIST ) * SRNAMT = 'ZLATMS' CALL ZLATMS( M, N, DIST, ISEED, TYPE, RWORK, MODE, $ CNDNUM, ANORM, KL, KU, 'No packing', A, LDA, $ WORK, INFO ) * * Check error code from ZLATMS. * IF( INFO.NE.0 ) THEN CALL ALAERH( PATH, 'ZLATMS', INFO, 0, ' ', M, N, -1, $ -1, -1, IMAT, NFAIL, NERRS, NOUT ) GO TO 50 END IF * * Set some values for K: the first value must be MINMN, * corresponding to the call of ZQLT01; other values are * used in the calls of ZQLT02, and must not exceed MINMN. * KVAL( 1 ) = MINMN KVAL( 2 ) = 0 KVAL( 3 ) = 1 KVAL( 4 ) = MINMN / 2 IF( MINMN.EQ.0 ) THEN NK = 1 ELSE IF( MINMN.EQ.1 ) THEN NK = 2 ELSE IF( MINMN.LE.3 ) THEN NK = 3 ELSE NK = 4 END IF * * Do for each value of K in KVAL * DO 40 IK = 1, NK K = KVAL( IK ) * * Do for each pair of values (NB,NX) in NBVAL and NXVAL. * DO 30 INB = 1, NNB NB = NBVAL( INB ) CALL XLAENV( 1, NB ) NX = NXVAL( INB ) CALL XLAENV( 3, NX ) DO I = 1, NTESTS RESULT( I ) = ZERO END DO NT = 2 IF( IK.EQ.1 ) THEN * * Test ZGEQLF * CALL ZQLT01( M, N, A, AF, AQ, AL, LDA, TAU, $ WORK, LWORK, RWORK, RESULT( 1 ) ) ELSE IF( M.GE.N ) THEN * * Test ZUNGQL, using factorization * returned by ZQLT01 * CALL ZQLT02( M, N, K, A, AF, AQ, AL, LDA, TAU, $ WORK, LWORK, RWORK, RESULT( 1 ) ) END IF IF( M.GE.K ) THEN * * Test ZUNMQL, using factorization returned * by ZQLT01 * CALL ZQLT03( M, N, K, AF, AC, AL, AQ, LDA, TAU, $ WORK, LWORK, RWORK, RESULT( 3 ) ) NT = NT + 4 * * If M>=N and K=N, call ZGEQLS to solve a system * with NRHS right hand sides and compute the * residual. * IF( K.EQ.N .AND. INB.EQ.1 ) THEN * * Generate a solution and set the right * hand side. * SRNAMT = 'ZLARHS' CALL ZLARHS( PATH, 'New', 'Full', $ 'No transpose', M, N, 0, 0, $ NRHS, A, LDA, XACT, LDA, B, LDA, $ ISEED, INFO ) * CALL ZLACPY( 'Full', M, NRHS, B, LDA, X, $ LDA ) SRNAMT = 'ZGEQLS' CALL ZGEQLS( M, N, NRHS, AF, LDA, TAU, X, $ LDA, WORK, LWORK, INFO ) * * Check error code from ZGEQLS. * IF( INFO.NE.0 ) $ CALL ALAERH( PATH, 'ZGEQLS', INFO, 0, ' ', $ M, N, NRHS, -1, NB, IMAT, $ NFAIL, NERRS, NOUT ) * CALL ZGET02( 'No transpose', M, N, NRHS, A, $ LDA, X( M-N+1 ), LDA, B, LDA, $ RWORK, RESULT( 7 ) ) NT = NT + 1 END IF END IF * * Print information about the tests that did not * pass the threshold. * DO 20 I = 1, NT IF( RESULT( I ).GE.THRESH ) THEN IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 ) $ CALL ALAHD( NOUT, PATH ) WRITE( NOUT, FMT = 9999 )M, N, K, NB, NX, $ IMAT, I, RESULT( I ) NFAIL = NFAIL + 1 END IF 20 CONTINUE NRUN = NRUN + NT 30 CONTINUE 40 CONTINUE 50 CONTINUE 60 CONTINUE 70 CONTINUE * * Print a summary of the results. * CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS ) * 9999 FORMAT( ' M=', I5, ', N=', I5, ', K=', I5, ', NB=', I4, ', NX=', $ I5, ', type ', I2, ', test(', I2, ')=', G12.5 ) RETURN * * End of ZCHKQL * END |