1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 |
SUBROUTINE ZLATME( N, DIST, ISEED, D, MODE, COND, DMAX, EI,
$ RSIGN, $ UPPER, SIM, DS, MODES, CONDS, KL, KU, ANORM, $ A, $ LDA, WORK, INFO ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * June 2010 * * .. Scalar Arguments .. CHARACTER DIST, EI, RSIGN, SIM, UPPER INTEGER INFO, KL, KU, LDA, MODE, MODES, N DOUBLE PRECISION ANORM, COND, CONDS COMPLEX*16 DMAX * .. * .. Array Arguments .. INTEGER ISEED( 4 ) DOUBLE PRECISION DS( * ) COMPLEX*16 A( LDA, * ), D( * ), WORK( * ) * .. * * Purpose * ======= * * ZLATME generates random non-symmetric square matrices with * specified eigenvalues for testing LAPACK programs. * * ZLATME operates by applying the following sequence of * operations: * * 1. Set the diagonal to D, where D may be input or * computed according to MODE, COND, DMAX, and RSIGN * as described below. * * 2. If UPPER='T', the upper triangle of A is set to random values * out of distribution DIST. * * 3. If SIM='T', A is multiplied on the left by a random matrix * X, whose singular values are specified by DS, MODES, and * CONDS, and on the right by X inverse. * * 4. If KL < N-1, the lower bandwidth is reduced to KL using * Householder transformations. If KU < N-1, the upper * bandwidth is reduced to KU. * * 5. If ANORM is not negative, the matrix is scaled to have * maximum-element-norm ANORM. * * (Note: since the matrix cannot be reduced beyond Hessenberg form, * no packing options are available.) * * Arguments * ========= * * N (input) INTEGER * The number of columns (or rows) of A. Not modified. * * DIST (input) CHARACTER*1 * On entry, DIST specifies the type of distribution to be used * to generate the random eigen-/singular values, and on the * upper triangle (see UPPER). * 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform ) * 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric ) * 'N' => NORMAL( 0, 1 ) ( 'N' for normal ) * 'D' => uniform on the complex disc |z| < 1. * Not modified. * * ISEED (input/output) INTEGER array, dimension ( 4 ) * On entry ISEED specifies the seed of the random number * generator. They should lie between 0 and 4095 inclusive, * and ISEED(4) should be odd. The random number generator * uses a linear congruential sequence limited to small * integers, and so should produce machine independent * random numbers. The values of ISEED are changed on * exit, and can be used in the next call to ZLATME * to continue the same random number sequence. * Changed on exit. * * D (input/output) COMPLEX*16 array, dimension ( N ) * This array is used to specify the eigenvalues of A. If * MODE=0, then D is assumed to contain the eigenvalues * otherwise they will be computed according to MODE, COND, * DMAX, and RSIGN and placed in D. * Modified if MODE is nonzero. * * MODE (input) INTEGER * On entry this describes how the eigenvalues are to * be specified: * MODE = 0 means use D as input * MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND * MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND * MODE = 3 sets D(I)=COND**(-(I-1)/(N-1)) * MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND) * MODE = 5 sets D to random numbers in the range * ( 1/COND , 1 ) such that their logarithms * are uniformly distributed. * MODE = 6 set D to random numbers from same distribution * as the rest of the matrix. * MODE < 0 has the same meaning as ABS(MODE), except that * the order of the elements of D is reversed. * Thus if MODE is between 1 and 4, D has entries ranging * from 1 to 1/COND, if between -1 and -4, D has entries * ranging from 1/COND to 1, * Not modified. * * COND (input) DOUBLE PRECISION * On entry, this is used as described under MODE above. * If used, it must be >= 1. Not modified. * * DMAX (input) COMPLEX*16 * If MODE is neither -6, 0 nor 6, the contents of D, as * computed according to MODE and COND, will be scaled by * DMAX / max(abs(D(i))). Note that DMAX need not be * positive or real: if DMAX is negative or complex (or zero), * D will be scaled by a negative or complex number (or zero). * If RSIGN='F' then the largest (absolute) eigenvalue will be * equal to DMAX. * Not modified. * * EI (input) CHARACTER*1 array, dimension ( N ) * (ignored) * Not modified. * * RSIGN (input) CHARACTER*1 * If MODE is not 0, 6, or -6, and RSIGN='T', then the * elements of D, as computed according to MODE and COND, will * be multiplied by a random complex number from the unit * circle |z| = 1. If RSIGN='F', they will not be. RSIGN may * only have the values 'T' or 'F'. * Not modified. * * UPPER (input) CHARACTER*1 * If UPPER='T', then the elements of A above the diagonal * will be set to random numbers out of DIST. If UPPER='F', * they will not. UPPER may only have the values 'T' or 'F'. * Not modified. * * SIM (input) CHARACTER*1 * If SIM='T', then A will be operated on by a "similarity * transform", i.e., multiplied on the left by a matrix X and * on the right by X inverse. X = U S V, where U and V are * random unitary matrices and S is a (diagonal) matrix of * singular values specified by DS, MODES, and CONDS. If * SIM='F', then A will not be transformed. * Not modified. * * DS (input/output) DOUBLE PRECISION array, dimension ( N ) * This array is used to specify the singular values of X, * in the same way that D specifies the eigenvalues of A. * If MODE=0, the DS contains the singular values, which * may not be zero. * Modified if MODE is nonzero. * * MODES (input) INTEGER * * CONDS (input) DOUBLE PRECISION * Similar to MODE and COND, but for specifying the diagonal * of S. MODES=-6 and +6 are not allowed (since they would * result in randomly ill-conditioned eigenvalues.) * * KL (input) INTEGER * This specifies the lower bandwidth of the matrix. KL=1 * specifies upper Hessenberg form. If KL is at least N-1, * then A will have full lower bandwidth. * Not modified. * * KU (input) INTEGER * This specifies the upper bandwidth of the matrix. KU=1 * specifies lower Hessenberg form. If KU is at least N-1, * then A will have full upper bandwidth; if KU and KL * are both at least N-1, then A will be dense. Only one of * KU and KL may be less than N-1. * Not modified. * * ANORM (input) DOUBLE PRECISION * If ANORM is not negative, then A will be scaled by a non- * negative real number to make the maximum-element-norm of A * to be ANORM. * Not modified. * * A (output) COMPLEX*16 array, dimension ( LDA, N ) * On exit A is the desired test matrix. * Modified. * * LDA (input) INTEGER * LDA specifies the first dimension of A as declared in the * calling program. LDA must be at least M. * Not modified. * * WORK (workspace) COMPLEX*16 array, dimension ( 3*N ) * Workspace. * Modified. * * INFO (output) INTEGER * Error code. On exit, INFO will be set to one of the * following values: * 0 => normal return * -1 => N negative * -2 => DIST illegal string * -5 => MODE not in range -6 to 6 * -6 => COND less than 1.0, and MODE neither -6, 0 nor 6 * -9 => RSIGN is not 'T' or 'F' * -10 => UPPER is not 'T' or 'F' * -11 => SIM is not 'T' or 'F' * -12 => MODES=0 and DS has a zero singular value. * -13 => MODES is not in the range -5 to 5. * -14 => MODES is nonzero and CONDS is less than 1. * -15 => KL is less than 1. * -16 => KU is less than 1, or KL and KU are both less than * N-1. * -19 => LDA is less than M. * 1 => Error return from ZLATM1 (computing D) * 2 => Cannot scale to DMAX (max. eigenvalue is 0) * 3 => Error return from DLATM1 (computing DS) * 4 => Error return from ZLARGE * 5 => Zero singular value from DLATM1. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D+0 ) DOUBLE PRECISION ONE PARAMETER ( ONE = 1.0D+0 ) COMPLEX*16 CZERO PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) ) COMPLEX*16 CONE PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. LOGICAL BADS INTEGER I, IC, ICOLS, IDIST, IINFO, IR, IROWS, IRSIGN, $ ISIM, IUPPER, J, JC, JCR DOUBLE PRECISION RALPHA, TEMP COMPLEX*16 ALPHA, TAU, XNORMS * .. * .. Local Arrays .. DOUBLE PRECISION TEMPA( 1 ) * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION ZLANGE COMPLEX*16 ZLARND EXTERNAL LSAME, ZLANGE, ZLARND * .. * .. External Subroutines .. EXTERNAL DLATM1, XERBLA, ZCOPY, ZDSCAL, ZGEMV, ZGERC, $ ZLACGV, ZLARFG, ZLARGE, ZLARNV, ZLASET, ZLATM1, $ ZSCAL * .. * .. Intrinsic Functions .. INTRINSIC ABS, DCONJG, MAX, MOD * .. * .. Executable Statements .. * * 1) Decode and Test the input parameters. * Initialize flags & seed. * INFO = 0 * * Quick return if possible * IF( N.EQ.0 ) $ RETURN * * Decode DIST * IF( LSAME( DIST, 'U' ) ) THEN IDIST = 1 ELSE IF( LSAME( DIST, 'S' ) ) THEN IDIST = 2 ELSE IF( LSAME( DIST, 'N' ) ) THEN IDIST = 3 ELSE IF( LSAME( DIST, 'D' ) ) THEN IDIST = 4 ELSE IDIST = -1 END IF * * Decode RSIGN * IF( LSAME( RSIGN, 'T' ) ) THEN IRSIGN = 1 ELSE IF( LSAME( RSIGN, 'F' ) ) THEN IRSIGN = 0 ELSE IRSIGN = -1 END IF * * Decode UPPER * IF( LSAME( UPPER, 'T' ) ) THEN IUPPER = 1 ELSE IF( LSAME( UPPER, 'F' ) ) THEN IUPPER = 0 ELSE IUPPER = -1 END IF * * Decode SIM * IF( LSAME( SIM, 'T' ) ) THEN ISIM = 1 ELSE IF( LSAME( SIM, 'F' ) ) THEN ISIM = 0 ELSE ISIM = -1 END IF * * Check DS, if MODES=0 and ISIM=1 * BADS = .FALSE. IF( MODES.EQ.0 .AND. ISIM.EQ.1 ) THEN DO 10 J = 1, N IF( DS( J ).EQ.ZERO ) $ BADS = .TRUE. 10 CONTINUE END IF * * Set INFO if an error * IF( N.LT.0 ) THEN INFO = -1 ELSE IF( IDIST.EQ.-1 ) THEN INFO = -2 ELSE IF( ABS( MODE ).GT.6 ) THEN INFO = -5 ELSE IF( ( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) .AND. COND.LT.ONE ) $ THEN INFO = -6 ELSE IF( IRSIGN.EQ.-1 ) THEN INFO = -9 ELSE IF( IUPPER.EQ.-1 ) THEN INFO = -10 ELSE IF( ISIM.EQ.-1 ) THEN INFO = -11 ELSE IF( BADS ) THEN INFO = -12 ELSE IF( ISIM.EQ.1 .AND. ABS( MODES ).GT.5 ) THEN INFO = -13 ELSE IF( ISIM.EQ.1 .AND. MODES.NE.0 .AND. CONDS.LT.ONE ) THEN INFO = -14 ELSE IF( KL.LT.1 ) THEN INFO = -15 ELSE IF( KU.LT.1 .OR. ( KU.LT.N-1 .AND. KL.LT.N-1 ) ) THEN INFO = -16 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -19 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZLATME', -INFO ) RETURN END IF * * Initialize random number generator * DO 20 I = 1, 4 ISEED( I ) = MOD( ABS( ISEED( I ) ), 4096 ) 20 CONTINUE * IF( MOD( ISEED( 4 ), 2 ).NE.1 ) $ ISEED( 4 ) = ISEED( 4 ) + 1 * * 2) Set up diagonal of A * * Compute D according to COND and MODE * CALL ZLATM1( MODE, COND, IRSIGN, IDIST, ISEED, D, N, IINFO ) IF( IINFO.NE.0 ) THEN INFO = 1 RETURN END IF IF( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) THEN * * Scale by DMAX * TEMP = ABS( D( 1 ) ) DO 30 I = 2, N TEMP = MAX( TEMP, ABS( D( I ) ) ) 30 CONTINUE * IF( TEMP.GT.ZERO ) THEN ALPHA = DMAX / TEMP ELSE INFO = 2 RETURN END IF * CALL ZSCAL( N, ALPHA, D, 1 ) * END IF * CALL ZLASET( 'Full', N, N, CZERO, CZERO, A, LDA ) CALL ZCOPY( N, D, 1, A, LDA+1 ) * * 3) If UPPER='T', set upper triangle of A to random numbers. * IF( IUPPER.NE.0 ) THEN DO 40 JC = 2, N CALL ZLARNV( IDIST, ISEED, JC-1, A( 1, JC ) ) 40 CONTINUE END IF * * 4) If SIM='T', apply similarity transformation. * * -1 * Transform is X A X , where X = U S V, thus * * it is U S V A V' (1/S) U' * IF( ISIM.NE.0 ) THEN * * Compute S (singular values of the eigenvector matrix) * according to CONDS and MODES * CALL DLATM1( MODES, CONDS, 0, 0, ISEED, DS, N, IINFO ) IF( IINFO.NE.0 ) THEN INFO = 3 RETURN END IF * * Multiply by V and V' * CALL ZLARGE( N, A, LDA, ISEED, WORK, IINFO ) IF( IINFO.NE.0 ) THEN INFO = 4 RETURN END IF * * Multiply by S and (1/S) * DO 50 J = 1, N CALL ZDSCAL( N, DS( J ), A( J, 1 ), LDA ) IF( DS( J ).NE.ZERO ) THEN CALL ZDSCAL( N, ONE / DS( J ), A( 1, J ), 1 ) ELSE INFO = 5 RETURN END IF 50 CONTINUE * * Multiply by U and U' * CALL ZLARGE( N, A, LDA, ISEED, WORK, IINFO ) IF( IINFO.NE.0 ) THEN INFO = 4 RETURN END IF END IF * * 5) Reduce the bandwidth. * IF( KL.LT.N-1 ) THEN * * Reduce bandwidth -- kill column * DO 60 JCR = KL + 1, N - 1 IC = JCR - KL IROWS = N + 1 - JCR ICOLS = N + KL - JCR * CALL ZCOPY( IROWS, A( JCR, IC ), 1, WORK, 1 ) XNORMS = WORK( 1 ) CALL ZLARFG( IROWS, XNORMS, WORK( 2 ), 1, TAU ) TAU = DCONJG( TAU ) WORK( 1 ) = CONE ALPHA = ZLARND( 5, ISEED ) * CALL ZGEMV( 'C', IROWS, ICOLS, CONE, A( JCR, IC+1 ), LDA, $ WORK, 1, CZERO, WORK( IROWS+1 ), 1 ) CALL ZGERC( IROWS, ICOLS, -TAU, WORK, 1, WORK( IROWS+1 ), 1, $ A( JCR, IC+1 ), LDA ) * CALL ZGEMV( 'N', N, IROWS, CONE, A( 1, JCR ), LDA, WORK, 1, $ CZERO, WORK( IROWS+1 ), 1 ) CALL ZGERC( N, IROWS, -DCONJG( TAU ), WORK( IROWS+1 ), 1, $ WORK, 1, A( 1, JCR ), LDA ) * A( JCR, IC ) = XNORMS CALL ZLASET( 'Full', IROWS-1, 1, CZERO, CZERO, $ A( JCR+1, IC ), LDA ) * CALL ZSCAL( ICOLS+1, ALPHA, A( JCR, IC ), LDA ) CALL ZSCAL( N, DCONJG( ALPHA ), A( 1, JCR ), 1 ) 60 CONTINUE ELSE IF( KU.LT.N-1 ) THEN * * Reduce upper bandwidth -- kill a row at a time. * DO 70 JCR = KU + 1, N - 1 IR = JCR - KU IROWS = N + KU - JCR ICOLS = N + 1 - JCR * CALL ZCOPY( ICOLS, A( IR, JCR ), LDA, WORK, 1 ) XNORMS = WORK( 1 ) CALL ZLARFG( ICOLS, XNORMS, WORK( 2 ), 1, TAU ) TAU = DCONJG( TAU ) WORK( 1 ) = CONE CALL ZLACGV( ICOLS-1, WORK( 2 ), 1 ) ALPHA = ZLARND( 5, ISEED ) * CALL ZGEMV( 'N', IROWS, ICOLS, CONE, A( IR+1, JCR ), LDA, $ WORK, 1, CZERO, WORK( ICOLS+1 ), 1 ) CALL ZGERC( IROWS, ICOLS, -TAU, WORK( ICOLS+1 ), 1, WORK, 1, $ A( IR+1, JCR ), LDA ) * CALL ZGEMV( 'C', ICOLS, N, CONE, A( JCR, 1 ), LDA, WORK, 1, $ CZERO, WORK( ICOLS+1 ), 1 ) CALL ZGERC( ICOLS, N, -DCONJG( TAU ), WORK, 1, $ WORK( ICOLS+1 ), 1, A( JCR, 1 ), LDA ) * A( IR, JCR ) = XNORMS CALL ZLASET( 'Full', 1, ICOLS-1, CZERO, CZERO, $ A( IR, JCR+1 ), LDA ) * CALL ZSCAL( IROWS+1, ALPHA, A( IR, JCR ), 1 ) CALL ZSCAL( N, DCONJG( ALPHA ), A( JCR, 1 ), LDA ) 70 CONTINUE END IF * * Scale the matrix to have norm ANORM * IF( ANORM.GE.ZERO ) THEN TEMP = ZLANGE( 'M', N, N, A, LDA, TEMPA ) IF( TEMP.GT.ZERO ) THEN RALPHA = ANORM / TEMP DO 80 J = 1, N CALL ZDSCAL( N, RALPHA, A( 1, J ), 1 ) 80 CONTINUE END IF END IF * RETURN * * End of ZLATME * END |