next up previous contents
Next: Bounds for the Eigenvalues Up: Reversibility; Estimates for the Previous: Alternative Estimate for the   Contents


Dirichlet-Forms and Rayleigh-Theorem

Remarks
 

In order to derive an upper bound for $ \lambda _2$, we need a representation formula for $ \lambda _2$,


First of all we will show the following lemma.

Lemma 2.8   $ \;$ For all $ {\mathbf{x}}=(x_1,\ldots,x_\ell)^\top\in\mathbb{R}^\ell$,

$\displaystyle D_{({\mathbf{P}},{\boldsymbol{\pi}})}({\mathbf{x}},{\mathbf{x}})=\frac{1}{2}\;\sum_{i,j\in E}\pi_ip_{ij}(x_j-x_i)^2\,.$ (116)

Proof
$ \;$ From the definition (103) of the inner product and the reversibility of the pair $ ({\mathbf{P}},{\boldsymbol{\pi}})$ we obtain
$\displaystyle 2\bigl(({\mathbf{I}}-{\mathbf{P}}){\mathbf{x}},{\mathbf{x}}\bigr)_{\boldsymbol{\pi}}$ $\displaystyle =$ $\displaystyle 2\sum\limits_{i,j\in E}\pi_ip_{ij}x_i(x_i-x_j)$  
  $\displaystyle \stackrel{i\to j}{=}$ $\displaystyle \sum\limits_{i,j\in E}\pi_ip_{ij}x_i(x_i-x_j)
+\sum\limits_{i,j\in E}\pi_jp_{ji}x_j(x_j-x_i)$  
  % latex2html id marker 34881
$\displaystyle \stackrel{(\ref{for.cha.rev})}{=}$ $\displaystyle \sum\limits_{i,j\in E}\pi_ip_{ij}x_i(x_i-x_j)
+\sum\limits_{i,j\in E}\pi_ip_{ij}x_j(x_j-x_i)$  
  $\displaystyle =$ $\displaystyle \sum_{i,j\in E}\pi_ip_{ij}(x_j-x_i)^2\,.$  


 
  $ \Box$


We will now prove the Rayleigh-theorem that yields a representation formula for the second largest eigenvalue $ \lambda _2$ of the reversible pair $ ({\mathbf{P}},{\boldsymbol{\pi}})$.

Theorem 2.17    

Proof
 


next up previous contents
Next: Bounds for the Eigenvalues Up: Reversibility; Estimates for the Previous: Alternative Estimate for the   Contents
Ursa Pantle 2006-07-20