next up previous contents
Next: Coupling Algorithms; Perfect MCMC Up: Error Analysis for MCMC Previous: MCMC Estimators; Bias and   Contents


Asymptotic Variance of Estimation; Mean Squared Error

For the statistical model introduced in Section 3.4.2 we now investigate the asymptotic behavior of the variance $ {\rm Var\,}\,\widehat\theta_n$ if $ n\to\infty$.

Theorem 3.19   $ \;$ Define $ \sigma^2=\sum_{i=1}^\ell \pi_i(\varphi_i-\theta)^2$ and let $ {\mathbf{Z}}=({\mathbf{I}}-({\mathbf{P}}-{\boldsymbol{\Pi}}))^{-1}$ be the fundamental matrix of $ {\mathbf{P}}$ defined by % latex2html id marker 38687
$ (\ref{def.fun.mat})$. Then

$\displaystyle \lim\limits_{n\to\infty}\;n\,{\rm Var\,}\,\widehat\theta_n =\sigm...
...g}}({\boldsymbol{\varphi}})({\mathbf{Z}}-{\mathbf{I}}){\boldsymbol{\varphi}}\,.$ (78)

Proof
 


Remarks
 

In order to investigate this problem more deeply we introduce the following notation: Let

$\displaystyle V(\varphi,{\mathbf{P}},{\boldsymbol{\pi}})=\lim_{n\to\infty}n{\rm Var\,}\,\widehat\theta_n\,,
$

where $ \varphi:E\to\mathbb{R}$ is an arbitrary function and $ ({\mathbf{P}},{\boldsymbol{\pi}})$ is an arbitrary reversible pair.

Theorem 3.20    

Proof
 


Remarks
$ \;$ As a particular consequence of Theorem 3.20 we get that



next up previous contents
Next: Coupling Algorithms; Perfect MCMC Up: Error Analysis for MCMC Previous: MCMC Estimators; Bias and   Contents
Ursa Pantle 2006-07-20