1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 |
SUBROUTINE DDRVBD( NSIZES, MM, NN, NTYPES, DOTYPE, ISEED, THRESH,
$ A, LDA, U, LDU, VT, LDVT, ASAV, USAV, VTSAV, S, $ SSAV, E, WORK, LWORK, IWORK, NOUT, INFO ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER INFO, LDA, LDU, LDVT, LWORK, NOUT, NSIZES, $ NTYPES DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER ISEED( 4 ), IWORK( * ), MM( * ), NN( * ) DOUBLE PRECISION A( LDA, * ), ASAV( LDA, * ), E( * ), S( * ), $ SSAV( * ), U( LDU, * ), USAV( LDU, * ), $ VT( LDVT, * ), VTSAV( LDVT, * ), WORK( * ) * .. * * Purpose * ======= * * DDRVBD checks the singular value decomposition (SVD) drivers * DGESVD, DGESDD, DGESVJ, and DGEJSV. * * Both DGESVD and DGESDD factor A = U diag(S) VT, where U and VT are * orthogonal and diag(S) is diagonal with the entries of the array S * on its diagonal. The entries of S are the singular values, * nonnegative and stored in decreasing order. U and VT can be * optionally not computed, overwritten on A, or computed partially. * * A is M by N. Let MNMIN = min( M, N ). S has dimension MNMIN. * U can be M by M or M by MNMIN. VT can be N by N or MNMIN by N. * * When DDRVBD is called, a number of matrix "sizes" (M's and N's) * and a number of matrix "types" are specified. For each size (M,N) * and each type of matrix, and for the minimal workspace as well as * workspace adequate to permit blocking, an M x N matrix "A" will be * generated and used to test the SVD routines. For each matrix, A will * be factored as A = U diag(S) VT and the following 12 tests computed: * * Test for DGESVD: * * (1) | A - U diag(S) VT | / ( |A| max(M,N) ulp ) * * (2) | I - U'U | / ( M ulp ) * * (3) | I - VT VT' | / ( N ulp ) * * (4) S contains MNMIN nonnegative values in decreasing order. * (Return 0 if true, 1/ULP if false.) * * (5) | U - Upartial | / ( M ulp ) where Upartial is a partially * computed U. * * (6) | VT - VTpartial | / ( N ulp ) where VTpartial is a partially * computed VT. * * (7) | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the * vector of singular values from the partial SVD * * Test for DGESDD: * * (8) | A - U diag(S) VT | / ( |A| max(M,N) ulp ) * * (9) | I - U'U | / ( M ulp ) * * (10) | I - VT VT' | / ( N ulp ) * * (11) S contains MNMIN nonnegative values in decreasing order. * (Return 0 if true, 1/ULP if false.) * * (12) | U - Upartial | / ( M ulp ) where Upartial is a partially * computed U. * * (13) | VT - VTpartial | / ( N ulp ) where VTpartial is a partially * computed VT. * * (14) | S - Spartial | / ( MNMIN ulp |S| ) where Spartial is the * vector of singular values from the partial SVD * * Test for SGESVJ: * * (15) | A - U diag(S) VT | / ( |A| max(M,N) ulp ) * * (16) | I - U'U | / ( M ulp ) * * (17) | I - VT VT' | / ( N ulp ) * * (18) S contains MNMIN nonnegative values in decreasing order. * (Return 0 if true, 1/ULP if false.) * * Test for SGEJSV: * * (19) | A - U diag(S) VT | / ( |A| max(M,N) ulp ) * * (20) | I - U'U | / ( M ulp ) * * (21) | I - VT VT' | / ( N ulp ) * * (22) S contains MNMIN nonnegative values in decreasing order. * (Return 0 if true, 1/ULP if false.) * * The "sizes" are specified by the arrays MM(1:NSIZES) and * NN(1:NSIZES); the value of each element pair (MM(j),NN(j)) * specifies one size. The "types" are specified by a logical array * DOTYPE( 1:NTYPES ); if DOTYPE(j) is .TRUE., then matrix type "j" * will be generated. * Currently, the list of possible types is: * * (1) The zero matrix. * (2) The identity matrix. * (3) A matrix of the form U D V, where U and V are orthogonal and * D has evenly spaced entries 1, ..., ULP with random signs * on the diagonal. * (4) Same as (3), but multiplied by the underflow-threshold / ULP. * (5) Same as (3), but multiplied by the overflow-threshold * ULP. * * Arguments * ========== * * NSIZES (input) INTEGER * The number of matrix sizes (M,N) contained in the vectors * MM and NN. * * MM (input) INTEGER array, dimension (NSIZES) * The values of the matrix row dimension M. * * NN (input) INTEGER array, dimension (NSIZES) * The values of the matrix column dimension N. * * NTYPES (input) INTEGER * The number of elements in DOTYPE. If it is zero, DDRVBD * does nothing. It must be at least zero. If it is MAXTYP+1 * and NSIZES is 1, then an additional type, MAXTYP+1 is * defined, which is to use whatever matrices are in A and B. * This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and * DOTYPE(MAXTYP+1) is .TRUE. . * * DOTYPE (input) LOGICAL array, dimension (NTYPES) * If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix * of type j will be generated. If NTYPES is smaller than the * maximum number of types defined (PARAMETER MAXTYP), then * types NTYPES+1 through MAXTYP will not be generated. If * NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through * DOTYPE(NTYPES) will be ignored. * * ISEED (input/output) INTEGER array, dimension (4) * On entry, the seed of the random number generator. The array * elements should be between 0 and 4095; if not they will be * reduced mod 4096. Also, ISEED(4) must be odd. * On exit, ISEED is changed and can be used in the next call to * DDRVBD to continue the same random number sequence. * * THRESH (input) DOUBLE PRECISION * The threshold value for the test ratios. A result is * included in the output file if RESULT >= THRESH. The test * ratios are scaled to be O(1), so THRESH should be a small * multiple of 1, e.g., 10 or 100. To have every test ratio * printed, use THRESH = 0. * * A (workspace) DOUBLE PRECISION array, dimension (LDA,NMAX) * where NMAX is the maximum value of N in NN. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,MMAX), * where MMAX is the maximum value of M in MM. * * U (workspace) DOUBLE PRECISION array, dimension (LDU,MMAX) * * LDU (input) INTEGER * The leading dimension of the array U. LDU >= max(1,MMAX). * * VT (workspace) DOUBLE PRECISION array, dimension (LDVT,NMAX) * * LDVT (input) INTEGER * The leading dimension of the array VT. LDVT >= max(1,NMAX). * * ASAV (workspace) DOUBLE PRECISION array, dimension (LDA,NMAX) * * USAV (workspace) DOUBLE PRECISION array, dimension (LDU,MMAX) * * VTSAV (workspace) DOUBLE PRECISION array, dimension (LDVT,NMAX) * * S (workspace) DOUBLE PRECISION array, dimension * (max(min(MM,NN))) * * SSAV (workspace) DOUBLE PRECISION array, dimension * (max(min(MM,NN))) * * E (workspace) DOUBLE PRECISION array, dimension * (max(min(MM,NN))) * * WORK (workspace) DOUBLE PRECISION array, dimension (LWORK) * * LWORK (input) INTEGER * The number of entries in WORK. This must be at least * max(3*MN+MX,5*MN-4)+2*MN**2 for all pairs * pairs (MN,MX)=( min(MM(j),NN(j), max(MM(j),NN(j)) ) * * IWORK (workspace) INTEGER array, dimension at least 8*min(M,N) * * NOUT (input) INTEGER * The FORTRAN unit number for printing out error messages * (e.g., if a routine returns IINFO not equal to 0.) * * INFO (output) INTEGER * If 0, then everything ran OK. * -1: NSIZES < 0 * -2: Some MM(j) < 0 * -3: Some NN(j) < 0 * -4: NTYPES < 0 * -7: THRESH < 0 * -10: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ). * -12: LDU < 1 or LDU < MMAX. * -14: LDVT < 1 or LDVT < NMAX, where NMAX is max( NN(j) ). * -21: LWORK too small. * If DLATMS, or DGESVD returns an error code, the * absolute value of it is returned. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) INTEGER MAXTYP PARAMETER ( MAXTYP = 5 ) * .. * .. Local Scalars .. LOGICAL BADMM, BADNN CHARACTER JOBQ, JOBU, JOBVT CHARACTER*3 PATH INTEGER I, IINFO, IJQ, IJU, IJVT, IWS, IWTMP, J, JSIZE, $ JTYPE, LSWORK, M, MINWRK, MMAX, MNMAX, MNMIN, $ MTYPES, N, NFAIL, NMAX, NTEST DOUBLE PRECISION ANORM, DIF, DIV, OVFL, ULP, ULPINV, UNFL * .. * .. Local Arrays .. CHARACTER CJOB( 4 ) INTEGER IOLDSD( 4 ) DOUBLE PRECISION RESULT( 22 ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH * .. * .. External Subroutines .. EXTERNAL ALASVM, DBDT01, DGESDD, DGESVD, DLABAD, DLACPY, $ DLASET, DLATMS, DORT01, DORT03, XERBLA, DGESVJ, $ DGEJSV * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, MIN * .. * .. Scalars in Common .. LOGICAL LERR, OK CHARACTER*32 SRNAMT INTEGER INFOT, NUNIT * .. * .. Common blocks .. COMMON / INFOC / INFOT, NUNIT, OK, LERR COMMON / SRNAMC / SRNAMT * .. * .. Data statements .. DATA CJOB / 'N', 'O', 'S', 'A' / * .. * .. Executable Statements .. * * Check for errors * INFO = 0 BADMM = .FALSE. BADNN = .FALSE. MMAX = 1 NMAX = 1 MNMAX = 1 MINWRK = 1 DO 10 J = 1, NSIZES MMAX = MAX( MMAX, MM( J ) ) IF( MM( J ).LT.0 ) $ BADMM = .TRUE. NMAX = MAX( NMAX, NN( J ) ) IF( NN( J ).LT.0 ) $ BADNN = .TRUE. MNMAX = MAX( MNMAX, MIN( MM( J ), NN( J ) ) ) MINWRK = MAX( MINWRK, MAX( 3*MIN( MM( J ), $ NN( J ) )+MAX( MM( J ), NN( J ) ), 5*MIN( MM( J ), $ NN( J )-4 ) )+2*MIN( MM( J ), NN( J ) )**2 ) 10 CONTINUE * * Check for errors * IF( NSIZES.LT.0 ) THEN INFO = -1 ELSE IF( BADMM ) THEN INFO = -2 ELSE IF( BADNN ) THEN INFO = -3 ELSE IF( NTYPES.LT.0 ) THEN INFO = -4 ELSE IF( LDA.LT.MAX( 1, MMAX ) ) THEN INFO = -10 ELSE IF( LDU.LT.MAX( 1, MMAX ) ) THEN INFO = -12 ELSE IF( LDVT.LT.MAX( 1, NMAX ) ) THEN INFO = -14 ELSE IF( MINWRK.GT.LWORK ) THEN INFO = -21 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DDRVBD', -INFO ) RETURN END IF * * Initialize constants * PATH( 1: 1 ) = 'Double precision' PATH( 2: 3 ) = 'BD' NFAIL = 0 NTEST = 0 UNFL = DLAMCH( 'Safe minimum' ) OVFL = ONE / UNFL CALL DLABAD( UNFL, OVFL ) ULP = DLAMCH( 'Precision' ) ULPINV = ONE / ULP INFOT = 0 * * Loop over sizes, types * DO 150 JSIZE = 1, NSIZES M = MM( JSIZE ) N = NN( JSIZE ) MNMIN = MIN( M, N ) * IF( NSIZES.NE.1 ) THEN MTYPES = MIN( MAXTYP, NTYPES ) ELSE MTYPES = MIN( MAXTYP+1, NTYPES ) END IF * DO 140 JTYPE = 1, MTYPES IF( .NOT.DOTYPE( JTYPE ) ) $ GO TO 140 * DO 20 J = 1, 4 IOLDSD( J ) = ISEED( J ) 20 CONTINUE * * Compute "A" * IF( MTYPES.GT.MAXTYP ) $ GO TO 30 * IF( JTYPE.EQ.1 ) THEN * * Zero matrix * CALL DLASET( 'Full', M, N, ZERO, ZERO, A, LDA ) * ELSE IF( JTYPE.EQ.2 ) THEN * * Identity matrix * CALL DLASET( 'Full', M, N, ZERO, ONE, A, LDA ) * ELSE * * (Scaled) random matrix * IF( JTYPE.EQ.3 ) $ ANORM = ONE IF( JTYPE.EQ.4 ) $ ANORM = UNFL / ULP IF( JTYPE.EQ.5 ) $ ANORM = OVFL*ULP CALL DLATMS( M, N, 'U', ISEED, 'N', S, 4, DBLE( MNMIN ), $ ANORM, M-1, N-1, 'N', A, LDA, WORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUT, FMT = 9996 )'Generator', IINFO, M, N, $ JTYPE, IOLDSD INFO = ABS( IINFO ) RETURN END IF END IF * 30 CONTINUE CALL DLACPY( 'F', M, N, A, LDA, ASAV, LDA ) * * Do for minimal and adequate (for blocking) workspace * DO 130 IWS = 1, 4 * DO 40 J = 1, 14 RESULT( J ) = -ONE 40 CONTINUE * * Test DGESVD: Factorize A * IWTMP = MAX( 3*MIN( M, N )+MAX( M, N ), 5*MIN( M, N ) ) LSWORK = IWTMP + ( IWS-1 )*( LWORK-IWTMP ) / 3 LSWORK = MIN( LSWORK, LWORK ) LSWORK = MAX( LSWORK, 1 ) IF( IWS.EQ.4 ) $ LSWORK = LWORK * IF( IWS.GT.1 ) $ CALL DLACPY( 'F', M, N, ASAV, LDA, A, LDA ) SRNAMT = 'DGESVD' CALL DGESVD( 'A', 'A', M, N, A, LDA, SSAV, USAV, LDU, $ VTSAV, LDVT, WORK, LSWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUT, FMT = 9995 )'GESVD', IINFO, M, N, JTYPE, $ LSWORK, IOLDSD INFO = ABS( IINFO ) RETURN END IF * * Do tests 1--4 * CALL DBDT01( M, N, 0, ASAV, LDA, USAV, LDU, SSAV, E, $ VTSAV, LDVT, WORK, RESULT( 1 ) ) IF( M.NE.0 .AND. N.NE.0 ) THEN CALL DORT01( 'Columns', M, M, USAV, LDU, WORK, LWORK, $ RESULT( 2 ) ) CALL DORT01( 'Rows', N, N, VTSAV, LDVT, WORK, LWORK, $ RESULT( 3 ) ) END IF RESULT( 4 ) = ZERO DO 50 I = 1, MNMIN - 1 IF( SSAV( I ).LT.SSAV( I+1 ) ) $ RESULT( 4 ) = ULPINV IF( SSAV( I ).LT.ZERO ) $ RESULT( 4 ) = ULPINV 50 CONTINUE IF( MNMIN.GE.1 ) THEN IF( SSAV( MNMIN ).LT.ZERO ) $ RESULT( 4 ) = ULPINV END IF * * Do partial SVDs, comparing to SSAV, USAV, and VTSAV * RESULT( 5 ) = ZERO RESULT( 6 ) = ZERO RESULT( 7 ) = ZERO DO 80 IJU = 0, 3 DO 70 IJVT = 0, 3 IF( ( IJU.EQ.3 .AND. IJVT.EQ.3 ) .OR. $ ( IJU.EQ.1 .AND. IJVT.EQ.1 ) )GO TO 70 JOBU = CJOB( IJU+1 ) JOBVT = CJOB( IJVT+1 ) CALL DLACPY( 'F', M, N, ASAV, LDA, A, LDA ) SRNAMT = 'DGESVD' CALL DGESVD( JOBU, JOBVT, M, N, A, LDA, S, U, LDU, $ VT, LDVT, WORK, LSWORK, IINFO ) * * Compare U * DIF = ZERO IF( M.GT.0 .AND. N.GT.0 ) THEN IF( IJU.EQ.1 ) THEN CALL DORT03( 'C', M, MNMIN, M, MNMIN, USAV, $ LDU, A, LDA, WORK, LWORK, DIF, $ IINFO ) ELSE IF( IJU.EQ.2 ) THEN CALL DORT03( 'C', M, MNMIN, M, MNMIN, USAV, $ LDU, U, LDU, WORK, LWORK, DIF, $ IINFO ) ELSE IF( IJU.EQ.3 ) THEN CALL DORT03( 'C', M, M, M, MNMIN, USAV, LDU, $ U, LDU, WORK, LWORK, DIF, $ IINFO ) END IF END IF RESULT( 5 ) = MAX( RESULT( 5 ), DIF ) * * Compare VT * DIF = ZERO IF( M.GT.0 .AND. N.GT.0 ) THEN IF( IJVT.EQ.1 ) THEN CALL DORT03( 'R', N, MNMIN, N, MNMIN, VTSAV, $ LDVT, A, LDA, WORK, LWORK, DIF, $ IINFO ) ELSE IF( IJVT.EQ.2 ) THEN CALL DORT03( 'R', N, MNMIN, N, MNMIN, VTSAV, $ LDVT, VT, LDVT, WORK, LWORK, $ DIF, IINFO ) ELSE IF( IJVT.EQ.3 ) THEN CALL DORT03( 'R', N, N, N, MNMIN, VTSAV, $ LDVT, VT, LDVT, WORK, LWORK, $ DIF, IINFO ) END IF END IF RESULT( 6 ) = MAX( RESULT( 6 ), DIF ) * * Compare S * DIF = ZERO DIV = MAX( DBLE( MNMIN )*ULP*S( 1 ), UNFL ) DO 60 I = 1, MNMIN - 1 IF( SSAV( I ).LT.SSAV( I+1 ) ) $ DIF = ULPINV IF( SSAV( I ).LT.ZERO ) $ DIF = ULPINV DIF = MAX( DIF, ABS( SSAV( I )-S( I ) ) / DIV ) 60 CONTINUE RESULT( 7 ) = MAX( RESULT( 7 ), DIF ) 70 CONTINUE 80 CONTINUE * * Test DGESDD: Factorize A * IWTMP = 5*MNMIN*MNMIN + 9*MNMIN + MAX( M, N ) LSWORK = IWTMP + ( IWS-1 )*( LWORK-IWTMP ) / 3 LSWORK = MIN( LSWORK, LWORK ) LSWORK = MAX( LSWORK, 1 ) IF( IWS.EQ.4 ) $ LSWORK = LWORK * CALL DLACPY( 'F', M, N, ASAV, LDA, A, LDA ) SRNAMT = 'DGESDD' CALL DGESDD( 'A', M, N, A, LDA, SSAV, USAV, LDU, VTSAV, $ LDVT, WORK, LSWORK, IWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUT, FMT = 9995 )'GESDD', IINFO, M, N, JTYPE, $ LSWORK, IOLDSD INFO = ABS( IINFO ) RETURN END IF * * Do tests 8--11 * CALL DBDT01( M, N, 0, ASAV, LDA, USAV, LDU, SSAV, E, $ VTSAV, LDVT, WORK, RESULT( 8 ) ) IF( M.NE.0 .AND. N.NE.0 ) THEN CALL DORT01( 'Columns', M, M, USAV, LDU, WORK, LWORK, $ RESULT( 9 ) ) CALL DORT01( 'Rows', N, N, VTSAV, LDVT, WORK, LWORK, $ RESULT( 10 ) ) END IF RESULT( 11 ) = ZERO DO 90 I = 1, MNMIN - 1 IF( SSAV( I ).LT.SSAV( I+1 ) ) $ RESULT( 11 ) = ULPINV IF( SSAV( I ).LT.ZERO ) $ RESULT( 11 ) = ULPINV 90 CONTINUE IF( MNMIN.GE.1 ) THEN IF( SSAV( MNMIN ).LT.ZERO ) $ RESULT( 11 ) = ULPINV END IF * * Do partial SVDs, comparing to SSAV, USAV, and VTSAV * RESULT( 12 ) = ZERO RESULT( 13 ) = ZERO RESULT( 14 ) = ZERO DO 110 IJQ = 0, 2 JOBQ = CJOB( IJQ+1 ) CALL DLACPY( 'F', M, N, ASAV, LDA, A, LDA ) SRNAMT = 'DGESDD' CALL DGESDD( JOBQ, M, N, A, LDA, S, U, LDU, VT, LDVT, $ WORK, LSWORK, IWORK, IINFO ) * * Compare U * DIF = ZERO IF( M.GT.0 .AND. N.GT.0 ) THEN IF( IJQ.EQ.1 ) THEN IF( M.GE.N ) THEN CALL DORT03( 'C', M, MNMIN, M, MNMIN, USAV, $ LDU, A, LDA, WORK, LWORK, DIF, $ INFO ) ELSE CALL DORT03( 'C', M, MNMIN, M, MNMIN, USAV, $ LDU, U, LDU, WORK, LWORK, DIF, $ INFO ) END IF ELSE IF( IJQ.EQ.2 ) THEN CALL DORT03( 'C', M, MNMIN, M, MNMIN, USAV, LDU, $ U, LDU, WORK, LWORK, DIF, INFO ) END IF END IF RESULT( 12 ) = MAX( RESULT( 12 ), DIF ) * * Compare VT * DIF = ZERO IF( M.GT.0 .AND. N.GT.0 ) THEN IF( IJQ.EQ.1 ) THEN IF( M.GE.N ) THEN CALL DORT03( 'R', N, MNMIN, N, MNMIN, VTSAV, $ LDVT, VT, LDVT, WORK, LWORK, $ DIF, INFO ) ELSE CALL DORT03( 'R', N, MNMIN, N, MNMIN, VTSAV, $ LDVT, A, LDA, WORK, LWORK, DIF, $ INFO ) END IF ELSE IF( IJQ.EQ.2 ) THEN CALL DORT03( 'R', N, MNMIN, N, MNMIN, VTSAV, $ LDVT, VT, LDVT, WORK, LWORK, DIF, $ INFO ) END IF END IF RESULT( 13 ) = MAX( RESULT( 13 ), DIF ) * * Compare S * DIF = ZERO DIV = MAX( DBLE( MNMIN )*ULP*S( 1 ), UNFL ) DO 100 I = 1, MNMIN - 1 IF( SSAV( I ).LT.SSAV( I+1 ) ) $ DIF = ULPINV IF( SSAV( I ).LT.ZERO ) $ DIF = ULPINV DIF = MAX( DIF, ABS( SSAV( I )-S( I ) ) / DIV ) 100 CONTINUE RESULT( 14 ) = MAX( RESULT( 14 ), DIF ) 110 CONTINUE * * Test DGESVJ: Factorize A * Note: DGESVJ does not work for M < N * RESULT( 15 ) = ZERO RESULT( 16 ) = ZERO RESULT( 17 ) = ZERO RESULT( 18 ) = ZERO * IF( M.GE.N ) THEN IWTMP = 5*MNMIN*MNMIN + 9*MNMIN + MAX( M, N ) LSWORK = IWTMP + ( IWS-1 )*( LWORK-IWTMP ) / 3 LSWORK = MIN( LSWORK, LWORK ) LSWORK = MAX( LSWORK, 1 ) IF( IWS.EQ.4 ) $ LSWORK = LWORK * CALL DLACPY( 'F', M, N, ASAV, LDA, USAV, LDA ) SRNAMT = 'DGESVJ' CALL DGESVJ( 'G', 'U', 'V', M, N, USAV, LDA, SSAV, & 0, A, LDVT, WORK, LWORK, INFO ) * * DGESVJ retuns V not VT, so we transpose to use the same * test suite. * DO J=1,N DO I=1,N VTSAV(J,I) = A(I,J) END DO END DO * IF( IINFO.NE.0 ) THEN WRITE( NOUT, FMT = 9995 )'GESVJ', IINFO, M, N, $ JTYPE, LSWORK, IOLDSD INFO = ABS( IINFO ) RETURN END IF * * Do tests 15--18 * CALL DBDT01( M, N, 0, ASAV, LDA, USAV, LDU, SSAV, E, $ VTSAV, LDVT, WORK, RESULT( 15 ) ) IF( M.NE.0 .AND. N.NE.0 ) THEN CALL DORT01( 'Columns', M, M, USAV, LDU, WORK, $ LWORK, RESULT( 16 ) ) CALL DORT01( 'Rows', N, N, VTSAV, LDVT, WORK, $ LWORK, RESULT( 17 ) ) END IF RESULT( 18 ) = ZERO DO 200 I = 1, MNMIN - 1 IF( SSAV( I ).LT.SSAV( I+1 ) ) $ RESULT( 18 ) = ULPINV IF( SSAV( I ).LT.ZERO ) $ RESULT( 18 ) = ULPINV 200 CONTINUE IF( MNMIN.GE.1 ) THEN IF( SSAV( MNMIN ).LT.ZERO ) $ RESULT( 18 ) = ULPINV END IF END IF * * Test DGEJSV: Factorize A * Note: DGEJSV does not work for M < N * RESULT( 19 ) = ZERO RESULT( 20 ) = ZERO RESULT( 21 ) = ZERO RESULT( 22 ) = ZERO IF( M.GE.N ) THEN IWTMP = 5*MNMIN*MNMIN + 9*MNMIN + MAX( M, N ) LSWORK = IWTMP + ( IWS-1 )*( LWORK-IWTMP ) / 3 LSWORK = MIN( LSWORK, LWORK ) LSWORK = MAX( LSWORK, 1 ) IF( IWS.EQ.4 ) $ LSWORK = LWORK * CALL DLACPY( 'F', M, N, ASAV, LDA, VTSAV, LDA ) SRNAMT = 'DGEJSV' CALL DGEJSV( 'G', 'U', 'V', 'R', 'N', 'N', & M, N, VTSAV, LDA, SSAV, USAV, LDU, A, LDVT, & WORK, LWORK, IWORK, INFO ) * * DGEJSV retuns V not VT, so we transpose to use the same * test suite. * DO J=1,N DO I=1,N VTSAV(J,I) = A(I,J) END DO END DO * IF( IINFO.NE.0 ) THEN WRITE( NOUT, FMT = 9995 )'GESVJ', IINFO, M, N, $ JTYPE, LSWORK, IOLDSD INFO = ABS( IINFO ) RETURN END IF * * Do tests 19--22 * CALL DBDT01( M, N, 0, ASAV, LDA, USAV, LDU, SSAV, E, $ VTSAV, LDVT, WORK, RESULT( 19 ) ) IF( M.NE.0 .AND. N.NE.0 ) THEN CALL DORT01( 'Columns', M, M, USAV, LDU, WORK, $ LWORK, RESULT( 20 ) ) CALL DORT01( 'Rows', N, N, VTSAV, LDVT, WORK, $ LWORK, RESULT( 21 ) ) END IF RESULT( 22 ) = ZERO DO 300 I = 1, MNMIN - 1 IF( SSAV( I ).LT.SSAV( I+1 ) ) $ RESULT( 22 ) = ULPINV IF( SSAV( I ).LT.ZERO ) $ RESULT( 22 ) = ULPINV 300 CONTINUE IF( MNMIN.GE.1 ) THEN IF( SSAV( MNMIN ).LT.ZERO ) $ RESULT( 22 ) = ULPINV END IF END IF * * End of Loop -- Check for RESULT(j) > THRESH * DO 120 J = 1, 22 IF( RESULT( J ).GE.THRESH ) THEN IF( NFAIL.EQ.0 ) THEN WRITE( NOUT, FMT = 9999 ) WRITE( NOUT, FMT = 9998 ) END IF WRITE( NOUT, FMT = 9997 )M, N, JTYPE, IWS, IOLDSD, $ J, RESULT( J ) NFAIL = NFAIL + 1 END IF 120 CONTINUE NTEST = NTEST + 22 * 130 CONTINUE 140 CONTINUE 150 CONTINUE * * Summary * CALL ALASVM( PATH, NOUT, NFAIL, NTEST, 0 ) * 9999 FORMAT( ' SVD -- Real Singular Value Decomposition Driver ', $ / ' Matrix types (see DDRVBD for details):', $ / / ' 1 = Zero matrix', / ' 2 = Identity matrix', $ / ' 3 = Evenly spaced singular values near 1', $ / ' 4 = Evenly spaced singular values near underflow', $ / ' 5 = Evenly spaced singular values near overflow', / / $ ' Tests performed: ( A is dense, U and V are orthogonal,', $ / 19X, ' S is an array, and Upartial, VTpartial, and', $ / 19X, ' Spartial are partially computed U, VT and S),', / ) 9998 FORMAT( ' 1 = | A - U diag(S) VT | / ( |A| max(M,N) ulp ) ', $ / ' 2 = | I - U**T U | / ( M ulp ) ', $ / ' 3 = | I - VT VT**T | / ( N ulp ) ', $ / ' 4 = 0 if S contains min(M,N) nonnegative values in', $ ' decreasing order, else 1/ulp', $ / ' 5 = | U - Upartial | / ( M ulp )', $ / ' 6 = | VT - VTpartial | / ( N ulp )', $ / ' 7 = | S - Spartial | / ( min(M,N) ulp |S| )', $ / ' 8 = | A - U diag(S) VT | / ( |A| max(M,N) ulp ) ', $ / ' 9 = | I - U**T U | / ( M ulp ) ', $ / '10 = | I - VT VT**T | / ( N ulp ) ', $ / '11 = 0 if S contains min(M,N) nonnegative values in', $ ' decreasing order, else 1/ulp', $ / '12 = | U - Upartial | / ( M ulp )', $ / '13 = | VT - VTpartial | / ( N ulp )', $ / '14 = | S - Spartial | / ( min(M,N) ulp |S| )', $ / '15 = | A - U diag(S) VT | / ( |A| max(M,N) ulp ) ', $ / '16 = | I - U**T U | / ( M ulp ) ', $ / '17 = | I - VT VT**T | / ( N ulp ) ', $ / '18 = 0 if S contains min(M,N) nonnegative values in', $ ' decreasing order, else 1/ulp', $ / '19 = | U - Upartial | / ( M ulp )', $ / '20 = | VT - VTpartial | / ( N ulp )', $ / '21 = | S - Spartial | / ( min(M,N) ulp |S| )', / / ) 9997 FORMAT( ' M=', I5, ', N=', I5, ', type ', I1, ', IWS=', I1, $ ', seed=', 4( I4, ',' ), ' test(', I2, ')=', G11.4 ) 9996 FORMAT( ' DDRVBD: ', A, ' returned INFO=', I6, '.', / 9X, 'M=', $ I6, ', N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), $ I5, ')' ) 9995 FORMAT( ' DDRVBD: ', A, ' returned INFO=', I6, '.', / 9X, 'M=', $ I6, ', N=', I6, ', JTYPE=', I6, ', LSWORK=', I6, / 9X, $ 'ISEED=(', 3( I5, ',' ), I5, ')' ) * RETURN * * End of DDRVBD * END |