1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 |
SUBROUTINE DDRVSG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
$ NOUNIT, A, LDA, B, LDB, D, Z, LDZ, AB, BB, AP, $ BP, WORK, NWORK, IWORK, LIWORK, RESULT, INFO ) * * -- LAPACK test routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * ******************************************************************* * * modified August 1997, a new parameter LIWORK is added * in the calling sequence. * * test routine DDGT01 is also modified * ******************************************************************* * * .. Scalar Arguments .. INTEGER INFO, LDA, LDB, LDZ, LIWORK, NOUNIT, NSIZES, $ NTYPES, NWORK DOUBLE PRECISION THRESH * .. * .. Array Arguments .. LOGICAL DOTYPE( * ) INTEGER ISEED( 4 ), IWORK( * ), NN( * ) DOUBLE PRECISION A( LDA, * ), AB( LDA, * ), AP( * ), $ B( LDB, * ), BB( LDB, * ), BP( * ), D( * ), $ RESULT( * ), WORK( * ), Z( LDZ, * ) * .. * * Purpose * ======= * * DDRVSG checks the real symmetric generalized eigenproblem * drivers. * * DSYGV computes all eigenvalues and, optionally, * eigenvectors of a real symmetric-definite generalized * eigenproblem. * * DSYGVD computes all eigenvalues and, optionally, * eigenvectors of a real symmetric-definite generalized * eigenproblem using a divide and conquer algorithm. * * DSYGVX computes selected eigenvalues and, optionally, * eigenvectors of a real symmetric-definite generalized * eigenproblem. * * DSPGV computes all eigenvalues and, optionally, * eigenvectors of a real symmetric-definite generalized * eigenproblem in packed storage. * * DSPGVD computes all eigenvalues and, optionally, * eigenvectors of a real symmetric-definite generalized * eigenproblem in packed storage using a divide and * conquer algorithm. * * DSPGVX computes selected eigenvalues and, optionally, * eigenvectors of a real symmetric-definite generalized * eigenproblem in packed storage. * * DSBGV computes all eigenvalues and, optionally, * eigenvectors of a real symmetric-definite banded * generalized eigenproblem. * * DSBGVD computes all eigenvalues and, optionally, * eigenvectors of a real symmetric-definite banded * generalized eigenproblem using a divide and conquer * algorithm. * * DSBGVX computes selected eigenvalues and, optionally, * eigenvectors of a real symmetric-definite banded * generalized eigenproblem. * * When DDRVSG is called, a number of matrix "sizes" ("n's") and a * number of matrix "types" are specified. For each size ("n") * and each type of matrix, one matrix A of the given type will be * generated; a random well-conditioned matrix B is also generated * and the pair (A,B) is used to test the drivers. * * For each pair (A,B), the following tests are performed: * * (1) DSYGV with ITYPE = 1 and UPLO ='U': * * | A Z - B Z D | / ( |A| |Z| n ulp ) * * (2) as (1) but calling DSPGV * (3) as (1) but calling DSBGV * (4) as (1) but with UPLO = 'L' * (5) as (4) but calling DSPGV * (6) as (4) but calling DSBGV * * (7) DSYGV with ITYPE = 2 and UPLO ='U': * * | A B Z - Z D | / ( |A| |Z| n ulp ) * * (8) as (7) but calling DSPGV * (9) as (7) but with UPLO = 'L' * (10) as (9) but calling DSPGV * * (11) DSYGV with ITYPE = 3 and UPLO ='U': * * | B A Z - Z D | / ( |A| |Z| n ulp ) * * (12) as (11) but calling DSPGV * (13) as (11) but with UPLO = 'L' * (14) as (13) but calling DSPGV * * DSYGVD, DSPGVD and DSBGVD performed the same 14 tests. * * DSYGVX, DSPGVX and DSBGVX performed the above 14 tests with * the parameter RANGE = 'A', 'N' and 'I', respectively. * * The "sizes" are specified by an array NN(1:NSIZES); the value * of each element NN(j) specifies one size. * The "types" are specified by a logical array DOTYPE( 1:NTYPES ); * if DOTYPE(j) is .TRUE., then matrix type "j" will be generated. * This type is used for the matrix A which has half-bandwidth KA. * B is generated as a well-conditioned positive definite matrix * with half-bandwidth KB (<= KA). * Currently, the list of possible types for A is: * * (1) The zero matrix. * (2) The identity matrix. * * (3) A diagonal matrix with evenly spaced entries * 1, ..., ULP and random signs. * (ULP = (first number larger than 1) - 1 ) * (4) A diagonal matrix with geometrically spaced entries * 1, ..., ULP and random signs. * (5) A diagonal matrix with "clustered" entries * 1, ULP, ..., ULP and random signs. * * (6) Same as (4), but multiplied by SQRT( overflow threshold ) * (7) Same as (4), but multiplied by SQRT( underflow threshold ) * * (8) A matrix of the form U* D U, where U is orthogonal and * D has evenly spaced entries 1, ..., ULP with random signs * on the diagonal. * * (9) A matrix of the form U* D U, where U is orthogonal and * D has geometrically spaced entries 1, ..., ULP with random * signs on the diagonal. * * (10) A matrix of the form U* D U, where U is orthogonal and * D has "clustered" entries 1, ULP,..., ULP with random * signs on the diagonal. * * (11) Same as (8), but multiplied by SQRT( overflow threshold ) * (12) Same as (8), but multiplied by SQRT( underflow threshold ) * * (13) symmetric matrix with random entries chosen from (-1,1). * (14) Same as (13), but multiplied by SQRT( overflow threshold ) * (15) Same as (13), but multiplied by SQRT( underflow threshold) * * (16) Same as (8), but with KA = 1 and KB = 1 * (17) Same as (8), but with KA = 2 and KB = 1 * (18) Same as (8), but with KA = 2 and KB = 2 * (19) Same as (8), but with KA = 3 and KB = 1 * (20) Same as (8), but with KA = 3 and KB = 2 * (21) Same as (8), but with KA = 3 and KB = 3 * * Arguments * ========= * * NSIZES INTEGER * The number of sizes of matrices to use. If it is zero, * DDRVSG does nothing. It must be at least zero. * Not modified. * * NN INTEGER array, dimension (NSIZES) * An array containing the sizes to be used for the matrices. * Zero values will be skipped. The values must be at least * zero. * Not modified. * * NTYPES INTEGER * The number of elements in DOTYPE. If it is zero, DDRVSG * does nothing. It must be at least zero. If it is MAXTYP+1 * and NSIZES is 1, then an additional type, MAXTYP+1 is * defined, which is to use whatever matrix is in A. This * is only useful if DOTYPE(1:MAXTYP) is .FALSE. and * DOTYPE(MAXTYP+1) is .TRUE. . * Not modified. * * DOTYPE LOGICAL array, dimension (NTYPES) * If DOTYPE(j) is .TRUE., then for each size in NN a * matrix of that size and of type j will be generated. * If NTYPES is smaller than the maximum number of types * defined (PARAMETER MAXTYP), then types NTYPES+1 through * MAXTYP will not be generated. If NTYPES is larger * than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) * will be ignored. * Not modified. * * ISEED INTEGER array, dimension (4) * On entry ISEED specifies the seed of the random number * generator. The array elements should be between 0 and 4095; * if not they will be reduced mod 4096. Also, ISEED(4) must * be odd. The random number generator uses a linear * congruential sequence limited to small integers, and so * should produce machine independent random numbers. The * values of ISEED are changed on exit, and can be used in the * next call to DDRVSG to continue the same random number * sequence. * Modified. * * THRESH DOUBLE PRECISION * A test will count as "failed" if the "error", computed as * described above, exceeds THRESH. Note that the error * is scaled to be O(1), so THRESH should be a reasonably * small multiple of 1, e.g., 10 or 100. In particular, * it should not depend on the precision (single vs. double) * or the size of the matrix. It must be at least zero. * Not modified. * * NOUNIT INTEGER * The FORTRAN unit number for printing out error messages * (e.g., if a routine returns IINFO not equal to 0.) * Not modified. * * A DOUBLE PRECISION array, dimension (LDA , max(NN)) * Used to hold the matrix whose eigenvalues are to be * computed. On exit, A contains the last matrix actually * used. * Modified. * * LDA INTEGER * The leading dimension of A and AB. It must be at * least 1 and at least max( NN ). * Not modified. * * B DOUBLE PRECISION array, dimension (LDB , max(NN)) * Used to hold the symmetric positive definite matrix for * the generailzed problem. * On exit, B contains the last matrix actually * used. * Modified. * * LDB INTEGER * The leading dimension of B and BB. It must be at * least 1 and at least max( NN ). * Not modified. * * D DOUBLE PRECISION array, dimension (max(NN)) * The eigenvalues of A. On exit, the eigenvalues in D * correspond with the matrix in A. * Modified. * * Z DOUBLE PRECISION array, dimension (LDZ, max(NN)) * The matrix of eigenvectors. * Modified. * * LDZ INTEGER * The leading dimension of Z. It must be at least 1 and * at least max( NN ). * Not modified. * * AB DOUBLE PRECISION array, dimension (LDA, max(NN)) * Workspace. * Modified. * * BB DOUBLE PRECISION array, dimension (LDB, max(NN)) * Workspace. * Modified. * * AP DOUBLE PRECISION array, dimension (max(NN)**2) * Workspace. * Modified. * * BP DOUBLE PRECISION array, dimension (max(NN)**2) * Workspace. * Modified. * * WORK DOUBLE PRECISION array, dimension (NWORK) * Workspace. * Modified. * * NWORK INTEGER * The number of entries in WORK. This must be at least * 1+5*N+2*N*lg(N)+3*N**2 where N = max( NN(j) ) and * lg( N ) = smallest integer k such that 2**k >= N. * Not modified. * * IWORK INTEGER array, dimension (LIWORK) * Workspace. * Modified. * * LIWORK INTEGER * The number of entries in WORK. This must be at least 6*N. * Not modified. * * RESULT DOUBLE PRECISION array, dimension (70) * The values computed by the 70 tests described above. * Modified. * * INFO INTEGER * If 0, then everything ran OK. * -1: NSIZES < 0 * -2: Some NN(j) < 0 * -3: NTYPES < 0 * -5: THRESH < 0 * -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). * -16: LDZ < 1 or LDZ < NMAX. * -21: NWORK too small. * -23: LIWORK too small. * If DLATMR, SLATMS, DSYGV, DSPGV, DSBGV, SSYGVD, SSPGVD, * DSBGVD, DSYGVX, DSPGVX or SSBGVX returns an error code, * the absolute value of it is returned. * Modified. * * ---------------------------------------------------------------------- * * Some Local Variables and Parameters: * ---- ----- --------- --- ---------- * ZERO, ONE Real 0 and 1. * MAXTYP The number of types defined. * NTEST The number of tests that have been run * on this matrix. * NTESTT The total number of tests for this call. * NMAX Largest value in NN. * NMATS The number of matrices generated so far. * NERRS The number of tests which have exceeded THRESH * so far (computed by DLAFTS). * COND, IMODE Values to be passed to the matrix generators. * ANORM Norm of A; passed to matrix generators. * * OVFL, UNFL Overflow and underflow thresholds. * ULP, ULPINV Finest relative precision and its inverse. * RTOVFL, RTUNFL Square roots of the previous 2 values. * The following four arrays decode JTYPE: * KTYPE(j) The general type (1-10) for type "j". * KMODE(j) The MODE value to be passed to the matrix * generator for type "j". * KMAGN(j) The order of magnitude ( O(1), * O(overflow^(1/2) ), O(underflow^(1/2) ) * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE, TEN PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TEN = 10.0D0 ) INTEGER MAXTYP PARAMETER ( MAXTYP = 21 ) * .. * .. Local Scalars .. LOGICAL BADNN CHARACTER UPLO INTEGER I, IBTYPE, IBUPLO, IINFO, IJ, IL, IMODE, ITEMP, $ ITYPE, IU, J, JCOL, JSIZE, JTYPE, KA, KA9, KB, $ KB9, M, MTYPES, N, NERRS, NMATS, NMAX, NTEST, $ NTESTT DOUBLE PRECISION ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL, $ RTUNFL, ULP, ULPINV, UNFL, VL, VU * .. * .. Local Arrays .. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ), $ KMAGN( MAXTYP ), KMODE( MAXTYP ), $ KTYPE( MAXTYP ) * .. * .. External Functions .. LOGICAL LSAME DOUBLE PRECISION DLAMCH, DLARND EXTERNAL LSAME, DLAMCH, DLARND * .. * .. External Subroutines .. EXTERNAL DLABAD, DLACPY, DLAFTS, DLASET, DLASUM, DLATMR, $ DLATMS, DSBGV, DSBGVD, DSBGVX, DSGT01, DSPGV, $ DSPGVD, DSPGVX, DSYGV, DSYGVD, DSYGVX, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, DBLE, MAX, MIN, SQRT * .. * .. Data statements .. DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 6*9 / DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1, $ 2, 3, 6*1 / DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0, $ 0, 0, 6*4 / * .. * .. Executable Statements .. * * 1) Check for errors * NTESTT = 0 INFO = 0 * BADNN = .FALSE. NMAX = 0 DO 10 J = 1, NSIZES NMAX = MAX( NMAX, NN( J ) ) IF( NN( J ).LT.0 ) $ BADNN = .TRUE. 10 CONTINUE * * Check for errors * IF( NSIZES.LT.0 ) THEN INFO = -1 ELSE IF( BADNN ) THEN INFO = -2 ELSE IF( NTYPES.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN INFO = -9 ELSE IF( LDZ.LE.1 .OR. LDZ.LT.NMAX ) THEN INFO = -16 ELSE IF( 2*MAX( NMAX, 3 )**2.GT.NWORK ) THEN INFO = -21 ELSE IF( 2*MAX( NMAX, 3 )**2.GT.LIWORK ) THEN INFO = -23 END IF * IF( INFO.NE.0 ) THEN CALL XERBLA( 'DDRVSG', -INFO ) RETURN END IF * * Quick return if possible * IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 ) $ RETURN * * More Important constants * UNFL = DLAMCH( 'Safe minimum' ) OVFL = DLAMCH( 'Overflow' ) CALL DLABAD( UNFL, OVFL ) ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' ) ULPINV = ONE / ULP RTUNFL = SQRT( UNFL ) RTOVFL = SQRT( OVFL ) * DO 20 I = 1, 4 ISEED2( I ) = ISEED( I ) 20 CONTINUE * * Loop over sizes, types * NERRS = 0 NMATS = 0 * DO 650 JSIZE = 1, NSIZES N = NN( JSIZE ) ANINV = ONE / DBLE( MAX( 1, N ) ) * IF( NSIZES.NE.1 ) THEN MTYPES = MIN( MAXTYP, NTYPES ) ELSE MTYPES = MIN( MAXTYP+1, NTYPES ) END IF * KA9 = 0 KB9 = 0 DO 640 JTYPE = 1, MTYPES IF( .NOT.DOTYPE( JTYPE ) ) $ GO TO 640 NMATS = NMATS + 1 NTEST = 0 * DO 30 J = 1, 4 IOLDSD( J ) = ISEED( J ) 30 CONTINUE * * 2) Compute "A" * * Control parameters: * * KMAGN KMODE KTYPE * =1 O(1) clustered 1 zero * =2 large clustered 2 identity * =3 small exponential (none) * =4 arithmetic diagonal, w/ eigenvalues * =5 random log hermitian, w/ eigenvalues * =6 random (none) * =7 random diagonal * =8 random hermitian * =9 banded, w/ eigenvalues * IF( MTYPES.GT.MAXTYP ) $ GO TO 90 * ITYPE = KTYPE( JTYPE ) IMODE = KMODE( JTYPE ) * * Compute norm * GO TO ( 40, 50, 60 )KMAGN( JTYPE ) * 40 CONTINUE ANORM = ONE GO TO 70 * 50 CONTINUE ANORM = ( RTOVFL*ULP )*ANINV GO TO 70 * 60 CONTINUE ANORM = RTUNFL*N*ULPINV GO TO 70 * 70 CONTINUE * IINFO = 0 COND = ULPINV * * Special Matrices -- Identity & Jordan block * IF( ITYPE.EQ.1 ) THEN * * Zero * KA = 0 KB = 0 CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA ) * ELSE IF( ITYPE.EQ.2 ) THEN * * Identity * KA = 0 KB = 0 CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA ) DO 80 JCOL = 1, N A( JCOL, JCOL ) = ANORM 80 CONTINUE * ELSE IF( ITYPE.EQ.4 ) THEN * * Diagonal Matrix, [Eigen]values Specified * KA = 0 KB = 0 CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND, $ ANORM, 0, 0, 'N', A, LDA, WORK( N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.5 ) THEN * * symmetric, eigenvalues specified * KA = MAX( 0, N-1 ) KB = KA CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND, $ ANORM, N, N, 'N', A, LDA, WORK( N+1 ), $ IINFO ) * ELSE IF( ITYPE.EQ.7 ) THEN * * Diagonal, random eigenvalues * KA = 0 KB = 0 CALL DLATMR( N, N, 'S', ISEED, 'S', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.8 ) THEN * * symmetric, random eigenvalues * KA = MAX( 0, N-1 ) KB = KA CALL DLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, ONE, $ 'T', 'N', WORK( N+1 ), 1, ONE, $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N, $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO ) * ELSE IF( ITYPE.EQ.9 ) THEN * * symmetric banded, eigenvalues specified * * The following values are used for the half-bandwidths: * * ka = 1 kb = 1 * ka = 2 kb = 1 * ka = 2 kb = 2 * ka = 3 kb = 1 * ka = 3 kb = 2 * ka = 3 kb = 3 * KB9 = KB9 + 1 IF( KB9.GT.KA9 ) THEN KA9 = KA9 + 1 KB9 = 1 END IF KA = MAX( 0, MIN( N-1, KA9 ) ) KB = MAX( 0, MIN( N-1, KB9 ) ) CALL DLATMS( N, N, 'S', ISEED, 'S', WORK, IMODE, COND, $ ANORM, KA, KA, 'N', A, LDA, WORK( N+1 ), $ IINFO ) * ELSE * IINFO = 1 END IF * IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE, $ IOLDSD INFO = ABS( IINFO ) RETURN END IF * 90 CONTINUE * ABSTOL = UNFL + UNFL IF( N.LE.1 ) THEN IL = 1 IU = N ELSE IL = 1 + ( N-1 )*DLARND( 1, ISEED2 ) IU = 1 + ( N-1 )*DLARND( 1, ISEED2 ) IF( IL.GT.IU ) THEN ITEMP = IL IL = IU IU = ITEMP END IF END IF * * 3) Call DSYGV, DSPGV, DSBGV, SSYGVD, SSPGVD, SSBGVD, * DSYGVX, DSPGVX, and DSBGVX, do tests. * * loop over the three generalized problems * IBTYPE = 1: A*x = (lambda)*B*x * IBTYPE = 2: A*B*x = (lambda)*x * IBTYPE = 3: B*A*x = (lambda)*x * DO 630 IBTYPE = 1, 3 * * loop over the setting UPLO * DO 620 IBUPLO = 1, 2 IF( IBUPLO.EQ.1 ) $ UPLO = 'U' IF( IBUPLO.EQ.2 ) $ UPLO = 'L' * * Generate random well-conditioned positive definite * matrix B, of bandwidth not greater than that of A. * CALL DLATMS( N, N, 'U', ISEED, 'P', WORK, 5, TEN, ONE, $ KB, KB, UPLO, B, LDB, WORK( N+1 ), $ IINFO ) * * Test DSYGV * NTEST = NTEST + 1 * CALL DLACPY( ' ', N, N, A, LDA, Z, LDZ ) CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB ) * CALL DSYGV( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D, $ WORK, NWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSYGV(V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 100 END IF END IF * * Do Test * CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * * Test DSYGVD * NTEST = NTEST + 1 * CALL DLACPY( ' ', N, N, A, LDA, Z, LDZ ) CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB ) * CALL DSYGVD( IBTYPE, 'V', UPLO, N, Z, LDZ, BB, LDB, D, $ WORK, NWORK, IWORK, LIWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSYGVD(V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 100 END IF END IF * * Do Test * CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * * Test DSYGVX * NTEST = NTEST + 1 * CALL DLACPY( ' ', N, N, A, LDA, AB, LDA ) CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB ) * CALL DSYGVX( IBTYPE, 'V', 'A', UPLO, N, AB, LDA, BB, $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z, $ LDZ, WORK, NWORK, IWORK( N+1 ), IWORK, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSYGVX(V,A' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 100 END IF END IF * * Do Test * CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 1 * CALL DLACPY( ' ', N, N, A, LDA, AB, LDA ) CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB ) * * since we do not know the exact eigenvalues of this * eigenpair, we just set VL and VU as constants. * It is quite possible that there are no eigenvalues * in this interval. * VL = ZERO VU = ANORM CALL DSYGVX( IBTYPE, 'V', 'V', UPLO, N, AB, LDA, BB, $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z, $ LDZ, WORK, NWORK, IWORK( N+1 ), IWORK, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSYGVX(V,V,' // $ UPLO // ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 100 END IF END IF * * Do Test * CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 1 * CALL DLACPY( ' ', N, N, A, LDA, AB, LDA ) CALL DLACPY( UPLO, N, N, B, LDB, BB, LDB ) * CALL DSYGVX( IBTYPE, 'V', 'I', UPLO, N, AB, LDA, BB, $ LDB, VL, VU, IL, IU, ABSTOL, M, D, Z, $ LDZ, WORK, NWORK, IWORK( N+1 ), IWORK, $ IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSYGVX(V,I,' // $ UPLO // ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 100 END IF END IF * * Do Test * CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * 100 CONTINUE * * Test DSPGV * NTEST = NTEST + 1 * * Copy the matrices into packed storage. * IF( LSAME( UPLO, 'U' ) ) THEN IJ = 1 DO 120 J = 1, N DO 110 I = 1, J AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 110 CONTINUE 120 CONTINUE ELSE IJ = 1 DO 140 J = 1, N DO 130 I = J, N AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 130 CONTINUE 140 CONTINUE END IF * CALL DSPGV( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ, $ WORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSPGV(V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 310 END IF END IF * * Do Test * CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * * Test DSPGVD * NTEST = NTEST + 1 * * Copy the matrices into packed storage. * IF( LSAME( UPLO, 'U' ) ) THEN IJ = 1 DO 160 J = 1, N DO 150 I = 1, J AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 150 CONTINUE 160 CONTINUE ELSE IJ = 1 DO 180 J = 1, N DO 170 I = J, N AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 170 CONTINUE 180 CONTINUE END IF * CALL DSPGVD( IBTYPE, 'V', UPLO, N, AP, BP, D, Z, LDZ, $ WORK, NWORK, IWORK, LIWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSPGVD(V,' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 310 END IF END IF * * Do Test * CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * * Test DSPGVX * NTEST = NTEST + 1 * * Copy the matrices into packed storage. * IF( LSAME( UPLO, 'U' ) ) THEN IJ = 1 DO 200 J = 1, N DO 190 I = 1, J AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 190 CONTINUE 200 CONTINUE ELSE IJ = 1 DO 220 J = 1, N DO 210 I = J, N AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 210 CONTINUE 220 CONTINUE END IF * CALL DSPGVX( IBTYPE, 'V', 'A', UPLO, N, AP, BP, VL, $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK, $ IWORK( N+1 ), IWORK, INFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSPGVX(V,A' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 310 END IF END IF * * Do Test * CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 1 * * Copy the matrices into packed storage. * IF( LSAME( UPLO, 'U' ) ) THEN IJ = 1 DO 240 J = 1, N DO 230 I = 1, J AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 230 CONTINUE 240 CONTINUE ELSE IJ = 1 DO 260 J = 1, N DO 250 I = J, N AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 250 CONTINUE 260 CONTINUE END IF * VL = ZERO VU = ANORM CALL DSPGVX( IBTYPE, 'V', 'V', UPLO, N, AP, BP, VL, $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK, $ IWORK( N+1 ), IWORK, INFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSPGVX(V,V' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 310 END IF END IF * * Do Test * CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 1 * * Copy the matrices into packed storage. * IF( LSAME( UPLO, 'U' ) ) THEN IJ = 1 DO 280 J = 1, N DO 270 I = 1, J AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 270 CONTINUE 280 CONTINUE ELSE IJ = 1 DO 300 J = 1, N DO 290 I = J, N AP( IJ ) = A( I, J ) BP( IJ ) = B( I, J ) IJ = IJ + 1 290 CONTINUE 300 CONTINUE END IF * CALL DSPGVX( IBTYPE, 'V', 'I', UPLO, N, AP, BP, VL, $ VU, IL, IU, ABSTOL, M, D, Z, LDZ, WORK, $ IWORK( N+1 ), IWORK, INFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSPGVX(V,I' // UPLO // $ ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 310 END IF END IF * * Do Test * CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * 310 CONTINUE * IF( IBTYPE.EQ.1 ) THEN * * TEST DSBGV * NTEST = NTEST + 1 * * Copy the matrices into band storage. * IF( LSAME( UPLO, 'U' ) ) THEN DO 340 J = 1, N DO 320 I = MAX( 1, J-KA ), J AB( KA+1+I-J, J ) = A( I, J ) 320 CONTINUE DO 330 I = MAX( 1, J-KB ), J BB( KB+1+I-J, J ) = B( I, J ) 330 CONTINUE 340 CONTINUE ELSE DO 370 J = 1, N DO 350 I = J, MIN( N, J+KA ) AB( 1+I-J, J ) = A( I, J ) 350 CONTINUE DO 360 I = J, MIN( N, J+KB ) BB( 1+I-J, J ) = B( I, J ) 360 CONTINUE 370 CONTINUE END IF * CALL DSBGV( 'V', UPLO, N, KA, KB, AB, LDA, BB, LDB, $ D, Z, LDZ, WORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSBGV(V,' // $ UPLO // ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 620 END IF END IF * * Do Test * CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * * TEST DSBGVD * NTEST = NTEST + 1 * * Copy the matrices into band storage. * IF( LSAME( UPLO, 'U' ) ) THEN DO 400 J = 1, N DO 380 I = MAX( 1, J-KA ), J AB( KA+1+I-J, J ) = A( I, J ) 380 CONTINUE DO 390 I = MAX( 1, J-KB ), J BB( KB+1+I-J, J ) = B( I, J ) 390 CONTINUE 400 CONTINUE ELSE DO 430 J = 1, N DO 410 I = J, MIN( N, J+KA ) AB( 1+I-J, J ) = A( I, J ) 410 CONTINUE DO 420 I = J, MIN( N, J+KB ) BB( 1+I-J, J ) = B( I, J ) 420 CONTINUE 430 CONTINUE END IF * CALL DSBGVD( 'V', UPLO, N, KA, KB, AB, LDA, BB, $ LDB, D, Z, LDZ, WORK, NWORK, IWORK, $ LIWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSBGVD(V,' // $ UPLO // ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 620 END IF END IF * * Do Test * CALL DSGT01( IBTYPE, UPLO, N, N, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * * Test DSBGVX * NTEST = NTEST + 1 * * Copy the matrices into band storage. * IF( LSAME( UPLO, 'U' ) ) THEN DO 460 J = 1, N DO 440 I = MAX( 1, J-KA ), J AB( KA+1+I-J, J ) = A( I, J ) 440 CONTINUE DO 450 I = MAX( 1, J-KB ), J BB( KB+1+I-J, J ) = B( I, J ) 450 CONTINUE 460 CONTINUE ELSE DO 490 J = 1, N DO 470 I = J, MIN( N, J+KA ) AB( 1+I-J, J ) = A( I, J ) 470 CONTINUE DO 480 I = J, MIN( N, J+KB ) BB( 1+I-J, J ) = B( I, J ) 480 CONTINUE 490 CONTINUE END IF * CALL DSBGVX( 'V', 'A', UPLO, N, KA, KB, AB, LDA, $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL, $ IU, ABSTOL, M, D, Z, LDZ, WORK, $ IWORK( N+1 ), IWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSBGVX(V,A' // $ UPLO // ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 620 END IF END IF * * Do Test * CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * * NTEST = NTEST + 1 * * Copy the matrices into band storage. * IF( LSAME( UPLO, 'U' ) ) THEN DO 520 J = 1, N DO 500 I = MAX( 1, J-KA ), J AB( KA+1+I-J, J ) = A( I, J ) 500 CONTINUE DO 510 I = MAX( 1, J-KB ), J BB( KB+1+I-J, J ) = B( I, J ) 510 CONTINUE 520 CONTINUE ELSE DO 550 J = 1, N DO 530 I = J, MIN( N, J+KA ) AB( 1+I-J, J ) = A( I, J ) 530 CONTINUE DO 540 I = J, MIN( N, J+KB ) BB( 1+I-J, J ) = B( I, J ) 540 CONTINUE 550 CONTINUE END IF * VL = ZERO VU = ANORM CALL DSBGVX( 'V', 'V', UPLO, N, KA, KB, AB, LDA, $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL, $ IU, ABSTOL, M, D, Z, LDZ, WORK, $ IWORK( N+1 ), IWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSBGVX(V,V' // $ UPLO // ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 620 END IF END IF * * Do Test * CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * NTEST = NTEST + 1 * * Copy the matrices into band storage. * IF( LSAME( UPLO, 'U' ) ) THEN DO 580 J = 1, N DO 560 I = MAX( 1, J-KA ), J AB( KA+1+I-J, J ) = A( I, J ) 560 CONTINUE DO 570 I = MAX( 1, J-KB ), J BB( KB+1+I-J, J ) = B( I, J ) 570 CONTINUE 580 CONTINUE ELSE DO 610 J = 1, N DO 590 I = J, MIN( N, J+KA ) AB( 1+I-J, J ) = A( I, J ) 590 CONTINUE DO 600 I = J, MIN( N, J+KB ) BB( 1+I-J, J ) = B( I, J ) 600 CONTINUE 610 CONTINUE END IF * CALL DSBGVX( 'V', 'I', UPLO, N, KA, KB, AB, LDA, $ BB, LDB, BP, MAX( 1, N ), VL, VU, IL, $ IU, ABSTOL, M, D, Z, LDZ, WORK, $ IWORK( N+1 ), IWORK, IINFO ) IF( IINFO.NE.0 ) THEN WRITE( NOUNIT, FMT = 9999 )'DSBGVX(V,I' // $ UPLO // ')', IINFO, N, JTYPE, IOLDSD INFO = ABS( IINFO ) IF( IINFO.LT.0 ) THEN RETURN ELSE RESULT( NTEST ) = ULPINV GO TO 620 END IF END IF * * Do Test * CALL DSGT01( IBTYPE, UPLO, N, M, A, LDA, B, LDB, Z, $ LDZ, D, WORK, RESULT( NTEST ) ) * END IF * 620 CONTINUE 630 CONTINUE * * End of Loop -- Check for RESULT(j) > THRESH * NTESTT = NTESTT + NTEST CALL DLAFTS( 'DSG', N, N, JTYPE, NTEST, RESULT, IOLDSD, $ THRESH, NOUNIT, NERRS ) 640 CONTINUE 650 CONTINUE * * Summary * CALL DLASUM( 'DSG', NOUNIT, NERRS, NTESTT ) * RETURN * * End of DDRVSG * 9999 FORMAT( ' DDRVSG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=', $ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' ) END |