next up previous contents
Next: Alternative Estimate for the Up: Reversibility; Estimates for the Previous: Determining the Rate of   Contents


Multiplicative Reversible Version of the Transition Matrix; Spectral Representation

At first we will discuss a method enabling us to transform (ergodic) transition matrices such that the resulting matrix is reversible.

Definition
$ \;$ The matrix $ {\mathbf{M}}={\mathbf{P}}\widetilde{\mathbf{P}}$ is called the multiplicative reversible version of the transition matrix $ {\mathbf{P}}$.


Remarks
 

This yields the following spectral representation of the multiplicative reversible version $ {\mathbf{M}}$ obtained from the transition matrix $ {\mathbf{P}}$; see also the spectral representation given by formula (30).

Theorem 2.15   $ \;$ For arbitrary $ n\in\mathbb{N}$ and $ {\mathbf{x}}\in\mathbb{R}^\ell$

$\displaystyle {\mathbf{M}}^n{\mathbf{x}}=\sum\limits_{i=1}^\ell\theta_{{\mathbf{M}},i}^n{\boldsymbol{\phi}}_i{\boldsymbol{\psi}}_i^\top{\mathbf{x}}\,.$ (101)

where $ {\boldsymbol{\phi}}_i$ and $ {\boldsymbol{\psi}}_i$ are the right and left eigenvectors of $ {\mathbf{M}}$ defined in % latex2html id marker 34442
$ (\ref{eig.vek.emm})$.

Proof
 


next up previous contents
Next: Alternative Estimate for the Up: Reversibility; Estimates for the Previous: Determining the Rate of   Contents
Ursa Pantle 2006-07-20