next up previous contents
Next: MCMC Estimators; Bias and Up: Error Analysis for MCMC Previous: Error Analysis for MCMC   Contents


Estimate for the Rate of Convergence

Theorem 3.15   $ \;$ The second largest eigenvalue $ \lambda _2$ of the transition matrix $ {\mathbf{P}}=(p_{ij})$ defined by % latex2html id marker 38145
$ (\ref{ein.tra.ein})$- % latex2html id marker 38147
$ (\ref{ein.tra.zwe})$ has the following upper bound

$\displaystyle \lambda_2\le 1-\;\frac{(1-b^{c/2})^2}{2}\;.$ (61)

Proof
 


The following lemma will turn out to be useful in order to derive a lower bound for the smallest eigenvalue $ \lambda _\ell $ of the transition matrix $ {\mathbf{P}}=(p_{ij})$ defined by % latex2html id marker 38296
$ (\ref{ein.tra.ein})$- % latex2html id marker 38298
$ (\ref{ein.tra.zwe})$.

Lemma 3.1    


Proof
 


Theorem 3.16   $ \;$ The smallest eigenvalue $ \lambda _\ell $ of the transition matrix $ {\mathbf{P}}=(p_{ij})$ defined by % latex2html id marker 38348
$ (\ref{ein.tra.ein})$- % latex2html id marker 38350
$ (\ref{ein.tra.zwe})$ has the following lower bound

$\displaystyle \lambda_\ell\ge -b^c\,.$ (67)

Proof
 


Remark
$ \;$ Summarizing the results of Theorems 3.15 and 3.16 we have shown that

$\displaystyle \vert\theta_2\vert=\max\{\lambda_2,\vert\lambda_\ell\vert\}\le \m...
...{ 1-\;\frac{(1-b^{c/2})^2}{2}\;,\,b^c\Bigr\} =1-\;\frac{(1-b^{c/2})^2}{2}\; \,.$ (68)



next up previous contents
Next: MCMC Estimators; Bias and Up: Error Analysis for MCMC Previous: Error Analysis for MCMC   Contents
Ursa Pantle 2006-07-20